
A Parametrized Algorithm that Implements Sequential, Causal, and Cache
Memory Consistency�

Ernesto Jiménez
Universidad Politécnica de Madrid, 28031 Madrid, Spain

ernes@eui.upm.es

Antonio Fernández
Universidad Rey Juan Carlos, 28933 Móstoles, Spain

afernandez@acm.org

Vicente Cholvi
Universitat Jaume I, 12071 Castellón, Spain

vcholvi@inf.uji.es

Abstract

In this paper we present an algorithm that can be used to
implement sequential, causal, or cache consistency in dis-
tributed shared memory (DSM) systems. For this purpose
it has a parameter that allows to choose the consistency
model to be implemented. As far as we know, this is the first
algorithm proposed that implements cache coherence.

In our algorithm, when implementing causal and cache
consistency all read and write operations are executed lo-
cally (i.e., are fast). It is known that no sequential algorithm
has only fast memory operations. However, in our algo-
rithm, when implementing sequential consistency all write
operations and some read operations are fast.

The algorithm uses propagation and full replication,
where values written by a process are propagated to the
rest of processes. It works in a cyclic turn fashion, with
each process of the DSM system broadcasting one message
in its turn. The values written by the process are sent in
the message (instead of sending one message for each write
operation), but unnecessary values are excluded. All this
allows to control the amount of message traffic due to the
algorithm.

1. Introduction

Distributed shared memory (DSM) is a well-known
mechanism for inter-process communication in a distributed

�This work is partially supported by the CICYT under grant TEL99-
0582 and the Comunidad Autónoma de Madrid under grant CAM-
07T/00112/1998.

environment. One of the main properties of a DSM system
is the semantic of its read and write operations, which is
commonly denoted as its consistency model.

However, while the semantic of read and write opera-
tions in sequential programs is clear, the situation is dif-
ferent for concurrent accesses to shared variables. This is
more evident if the shared memory is not centralized but
distributed among a number of processors, i.e. we have
distributed shared memory (DSM). Two of the most pop-
ular consistency models proposed are the sequential [9] and
causal consistency models. The former is close to what pro-
grammers expect from a shared memory, while the later is
powerful enough to allow easy programming but allows in-
expensive implementations. As a consequence, a number of
algorithms have been proposed in the literature implement-
ing sequential [2, 4, 6] and causal consistency [3, 11, 12].
A third, less popular, consistency model proposed in the lit-
erature is the cache model [7]. To our knowledge, no algo-
rithm to implement the cache consistency model has been
proposed.

An interesting property of any algorithm implementing
a consistency model is how long can a memory operation
take. If a memory operation does not need to wait for any
communication to finish, and can be completed based only
on the local state of the process that issued it, it is said that
the operation is fast, which is a very desirable feature. An
algorithm is fast if all its operations are fast. All the above
mentioned algorithms for causal consistency are fast. How-
ever, in [4], Attiya and Welch have shown that no sequential
algorithm can guarantee the fast executions of all its oper-
ations. This impossibility result restricts the efficiency of
any implementation of sequential consistency.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

In general, in order to increase concurrency, most DSM
protocols support replication of data. With replication,
there are copies (replicas) of the same variables in the local
memories of several processes of the system, which allows
these processes to use the variables simultaneously. How-
ever, in order to guarantee the consistency of the shared
memory, the system must control the replicas when the vari-
ables are updated. That control can be done by either invali-
dating outdated replicas or by propagating the new variable
values to update the replicas. When propagation is used, a
replica of the whole shared memory is usually kept in each
process.

Our Results In this paper, we introduce a parametrized
algorithm that implements sequential, causal, and cache
consistency. The algorithm has the convenience that we can
change the model it implements with a single parameter.
Furthermore, as far as we know, this is the first algorithm
proposed to implement cache consistency.

Our algorithm uses propagation and replication. With
this algorithm, each process in the system has a copy of the
complete set of variables that constitute the shared memory.
A write operation is propagated from the process that issued
it to the rest of processes so they can apply it locally. How-
ever, write operations are not propagated immediately. The
algorithm works on a cyclic turn fashion, with each process
broadcasting one message in its turn. The latest write oper-
ation on each variable issued by the process since it sent the
previous message is included in this single message. This
scheme allows a very simple control of the load of messages
in the network due to this protocol, since only one message
is sent periodically by each process. Furthermore, it com-
pares very favorably with most algorithms that use propa-
gation (e.g. [2, 4]), since they send one message for each
write operation issued, while ours does not propagate some
write operations, and the rest is grouped in single messages,
with the corresponding savings in bandwidth (by avoiding
the overhead of many messages).

When implementing causal and cache consistency, all
the operations in our algorithm are fast. When implement-
ing sequential consistency, from the results in [4] is derived
the impossibility of having all the memory operations fast.
However, in our algorithm, all write operations are fast.
Furthermore, all read operations are fast unless a specific
condition on the process issuing the read operation occurs.
This condition is the following: since the latest time it sent a
message, the process has not issued write operations on the
variable being read and has issued write operations on other
variables. An example of these non fast read operations is
one on a variable x issued by a process that previously (but
after it sent the previous message) issued a write operation
on a different variable y and did not issue a write operation
on x. A read operation in which this condition happens has

to block until the process that issued it has the turn.
It is very interesting to compare our sequential algorithm

with the sequential cache coherence algorithm proposed by
Afek et al. [2]. First, as we said, we do not send each vari-
able update in a single message as they do and we are able
to control the number of messages sent. However, both al-
gorithms have some features in common. In their algorithm,
like in ours, all write operations are fast. Also read opera-
tions are also fast unless a given condition occurs. In their
case, a read operation blocks if there are local write opera-
tions still not applied in the shared memory. Compared with
our condition, we also block a read operation if there are lo-
cal write operations still not propagated, but only if the vari-
able to be read was not written in one of these write oper-
ations, which makes our algorithm more interesting. How-
ever, the algorithm in [2] could be simply modified to use
the technique we present here and, hence, have the same
condition as ours. It is worth to mention here that the time
a read operation is blocked with our algorithm is bounded
if the communication delays are bounded (since it only de-
pends on the number of processes and the maximum com-
munication delay). In the algorithm of Afek et al. a blocked
read operation may need to wait for an arbitrary number of
write operations to be appplied.

A second aspect in which both algorithms differ has to
do with the model assumed. In the model of [2] there is a
communication medium among all processes (and with the
shared memory) that guarantees total order among concur-
rent write operations. In our case, we do not have such a
device, and must enforce the order of the operations with
the cyclic turn technique described above.

The rest of the paper is organized as follows. In Section 2
we introduce basic definitions. In Section 3 we introduce
the algorithm we propose. In Sections 4, 5, and 6 we prove
the correctness of our algorithm. In Section 7 we provide an
analysis of the complexity of our algorithm and in Section 8
we present our concluding remarks.

2. Definitions

In this paper we assume a distributed system that con-
sists of a set of n processes (each uniquely identified by a
value in the range 0:::n � 1). Processes do not fail and are
connected by a reliable message passing subsystem. These
processes use their local memory and the message passing
system to implement a shared memory abstraction. This ab-
straction is accessed through read and write operations on
variables of the memory. The execution of these memory
operations must be consistent with the particular memory
consistency model.

Each memory operation acts on a named variable and
has an associated value. A write operation by process p, de-
notedwp(x)v, stores the value v in the variable x. Similarly,

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

a read operation, denoted rp(x)v, reports to the process p
that issued it that v is stored in the variable x. To simplify
the analysis, we assume that a given value is written at most
once in any given variable and that the initial values of the
variables are set by using write operations.

In this paper we present an algorithm that uses replica-
tion and propagation. We assume each process holds a copy
of the whole set of variables in the shared memory. When
needed, we use xp to denote the local copy of variable x in
process p. Different copies of the same variable can hold
different values at the same time.

A computation � is a sequence of read and write oper-
ations (usually observed in some execution of the memory
algorithm). We denote with

�
! the order in which the oper-

ations in � happen. Abusing the notation, we will also use
seq1

�
! seq2, where seq1 and seq2 are sequences of oper-

ations, to denote that all the operations in seq1 precede all
the operations in seq2 in computation �.

Definition 1 (Legal Computation) A computation � is le-
gal if 8op = r(x)v 2 �; 9op0 = w(x)v 2 � : op0

�
! op

and @op00 = w(x)u : op0
�
! op00

�
! op.

Definition 2 (Causal Order) Let op and op0 2 �, op pre-
cedes op0 in the causal order (op ��

cau op0) if:
1. op and op0 are operations from the same process and
op

�
! op0,

2. op = w(x)v and op0 = r(x)v, or
3. 9op00 2 � : op ��

cau op00 ��
cau op0

We denote by �p the computation obtained by removing
from � all read operations issued by processes other than
p. We also denote by �(x) the computation obtained by
removing from � all the operations on variables other than
x.

Definition 3 (Causal Computation) We say that a compu-
tation � is causal if, for each process p, the computation �p

has a causal view �p which is a permutation of �p that pre-
serves the causal order ��

cau, and such that each prefix of
� is legal.

Definition 4 (Sequential Computation) We say that a
computation � is sequential if it has a sequential view �,
which is a permutation of � such that operations from the
same process appear in the same order as in �, and each
prefix of � is legal.

Definition 5 (Cache Computation) We say that a compu-
tation � is cache if, for each variable x, the computation
�(x) has a cache view �(x), which is a permutation of �(x)
such that operations from the same process appear in the
same order in �(x), and each prefix of �(x) is legal.

Definition 6 (Sequential, Causal or Cache Algorithm)
An algorithm implements sequential, causal or cache con-
sistency if all the computations observed in its executions
are sequential, causal, or cache, respectively.

3. The Algorithm

In this section we present the parametrized algorithm A
that implements causal, cache and sequential consistency.
Figure 1 presents the algorithm in detail. As it can be noted,
it is run with a parameter model, which defines the consis-
tency model that the algorithm must implement. Hence, the
parameter must take one of the values causal, sequential,
or cache.

In Figure 1 it can be seen that all write operations are
fast. When a process p issues a write operation wp(x)v,
the algorithm changes the local copy of variable x (which
we denote by xp) to the value v, includes the pair (x; v) in
a local set of variable updates (which we call updatesp),
and returns control. This set updatesp will later be asyn-
chronously propagated to the rest of processes. Note that, if
a pair with the variable x was already in updatesp, it is re-
moved before inserting the new pair, since it does not need
to be propagated anymore.

Processes propagate their respective sets updatesp in a
cyclic turn fashion, following the order of their identifiers.
To maintain the turn, each process p uses a variable turnp

which contains the identifier of the process whose set must
be propagated next (from p’s view). When turnp = p,
process p itself uses the communication channels among
processes to send to the rest of processes its local set of
updates updatesp. This is done in the algorithm with a
generic broadcast call, which could be simply implemented
by sending n � 1 point-to-point messages if the underly-
ing message passing subsystem does not provide a more
appropiate communication primitive. All this is done by
the atomic task send updates(), which also empties the set
updatesp. The message sent implicitly passes the turn to
the next process in order (turnp+1)mod n (see Figure 2).

The atomic task apply updates() is the one in charge
of applying the updates received from another process q in
updatesq. This task is activated whenever turnp = q and
the set updatesq is in the receiving buffer of process p. Note
that, when implementing sequential and cache consistency,
after a local write operation has been performed in some
variable, this task will stop applying the write operations
on the same variable from other processes. That allows the
system to “view” those writes as if they were overwritten
with the write value issued by the local process.

Read operations are always fast with causal and cache
consistencies. When implementing sequential consistency,
a read operation rp(x)u is fast unless updatesp contains a

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

Initialization ::
begin
turnp 0
updatesp ;

end

wp(x)v :: atomic function
begin
xp v
if ((x; �) 2 updatesp) then

remove (x; �) from updatesp
include (x; v) in updatesp

end

rp(x) :: atomic function
begin

if (model = sequential) and (updatesp 6= ;) and
((x; �) =2 updatesp) then

wait until turnp = p
return(xp)

end

send updates() :: atomic task activated whenever
turnp = p
begin

/* send to all processes, except itself */
broadcast(updatesp)
updatesp ;
turnp (turnp + 1)mod n

end

apply updates() :: atomic task activated whenever
turnp = q, p 6= q, and the set updatesq from process q
is in the receiving buffer of process p
begin

take updatesq from the receiving buffer
while updatesq 6= ; do

extract (x; v) from updatesq
if (model = causal) or ((x; �) =2 updatesp) then

xp v
turnp (turnp + 1)mod n

end

Figure 1. The algorithm A(model) for process
p. It is invoked with the parameter model,
which defines the consistency model that it
must implement.

. . .
updates0process 0

process 2

process n � 1

process 1

round

.

.

.

updates1

updates0

updates2

updatesn�1

Figure 2. cyclic turn fashion.

process 0

process 2

process 1

delay read

w2(y)z r2(x) r2(x)v

w1(x)v

updates0

updates1

updates2

Figure 3. An example of “non fast” read oper-
ation.

pair with a variable different from x. That is, the read op-
eration is not fast only if, since the latest time it held the
turn, process p has not issued write operations on x and has
issued write operations on other variables. In this case, and
only in this case, it is necessary to delay such a read oper-
ation until turnp = p for the next time (see Fig. 3). Note
that this condition is the same as the condition to execute
the task send updates(). We enforce a blocked read oper-
ation to have priority over the task send updates(). Hence,
when turnp = p, a blocked read operation finished before
send updates() is executed.

We have labeled the code of the read operation as atomic
because we do not want it to be executed while the vari-
able updatesp is manipulated by some other task. However,
if the read operation blocks, other tasks are free to access
the algorithm variables. In particular, it is necessary that
apply updates() updates the variable turnp for the opera-
tion to finish eventually.

4.A(causal) Implements Causal Consistency

In this section, we show that the algorithm A, executed
with the parameter causal, implements causal consistency.
In the rest of this section we assume that � is a computation
observed in the execution of the algorithm A(causal) and
�p is the sequence obtained by removing from � all read
operations issued by processes other than p.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

Definition 7 The ith writes of process q, denoted writesiq ,
i > 0, is the subsequence of � that contains all the write
operations issued by process q after send updates() is exe-
cuted for the ith time, and before it is executed for the i+1st

time.

For simplicity, we assume that no write operation is is-
sued by any process before it executes send updates() for
the first time. This allows us to consider writes0p as the
empty sequence. Observe in A(causal) that the i + 1st

set updatesq broadcasted by process q contains, for each
variable, the last (if any) write operation in writes iq on that
variable.

Then, we construct a permutation �p of �p as follows.
Given the sequence of operations issued by p, in the order
they are issued, we insert the sequence writesiq in the point
of the sequence in which apply updates() is executed with
the set updatesq for the i + 1st time, for all q 6= p and
i � 0. Since the execution of apply updates() is atomic, it
does not overlap any of the operations issued by p, and the
placement of every sequence writesiq can be easily found.

We show in the following lemmas that �p is in fact a
causal view of �p. Some proofs are omitted due to space
limitation.

Lemma 1 Each prefix of �p preserves the causal order
��
cau

Lemma 2 Each prefix of �p is legal.

Proof: Let p be a prefix of �p. Let us consider a
read operation op = rp(x)v in p. From the algorithm
A(causal) it can be seen that the read operation returns the
value of the local copy xp of x, and that this value is only
set by a local write or the execution of apply updates()
with a set updatesq from some process q 6= p. In either
case, the corresponding write operation op 0 = w(x)v
must precede op in p. Furthermore, the existence of
another write operation op00 = w(x)u in �p between
op0 and op is not possible, since it would mean that op
would have found the value u in xp, instead of the value v.

Lemma 3 �p is a causal view of �p.

Proof: From Lemma 1, each prefix of �p preserves the
causal order ��

cau, and from Lemma 2, each prefix of �p is
legal. Hence, from Definition 3, �p is a causal view of �p.

Theorem 1 The algorithm A(causal) implements causal
consistency.

Proof: From Lemma 3, every computation � observed in
the execution of the algorithmA(causal) has a causal view

�p of �p, 8p. Hence, from Definition 3, every � is causal,
and, from Definition 6, the algorithm A(causal) is causal.

5. A(sequential) Implements Sequential Con-
sistency

In this section, we show that the algorithm A, executed
with the parameter sequential, implements sequential con-
sistency. In the rest of this section we assume that � is
a computation observed in the execution of the algorithm
A(sequential). Also, any time reference in this section
has to do with the time in the execution in which � was ob-
served. We first introduce some definitions of subsequences
of �. In all of them their operations follow the same order
as they have in �.

Definition 8 The ith iteration of process p, denoted itip, i >
0, is the subsequence of � that contains all the operations
issued by process p after send updates() is executed for
the ith time, and before it is executed for the i+ 1st time.

Observe that any operation in itip finishes before
send updates() is executed for the i + 1st time, since all
write and most read operations are fast, and we assume that
blocked read operations have priority over the execution of
send updates().

Definition 9 The ith iteration tail of process p, denoted
tailip, is the subsequence of itip that includes all the opera-
tions from the first write operation (included) until the end
of itip. If itip does not contain any write operation, tail ip is
the empty sequence.

Observe that all write operations in itip are in tailip. Further-
more, it is easy to check in A(sequential) that the i + 1st

set updatesp broadcasted by process p contains, for each
variable, the last (if any) write operation in tail ip.

Definition 10 The ith iteration header of process p, denoted
headip, is the subsequence of itip that contains all the oper-
ations in itip that are not in tailip.

It should be clear that all the operations in headip precede
all the operations in tailip. We use now the time instants
sets received from other processes are applied to partition
the sequence headip. Note that between the ith and the
i + 1st execution of send updates() by p (which defines
the operations that are in itip, and hence in headip) the task
apply updates() is executed n � 1 times, with sets from
processes (p+1)mod n; :::; n� 1; 0; :::; (p� 1)mod n (in
this order).

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

process 0

process 2

process 1

ti
0

t
i�1
0

si
0;0 si

0;2si
0;1

t
i�1
2

si
1;2si

1;1 ti
1

si
1;0

ti
2

si
2;2 si

2;0 si
2;1s

i�1
2;0

s
i+1
2;2

s
i+1
2;0

s
i+1
0;0

s
i+1
0;1

s
i+1
0;2

t
i+1
0

s
i+1
1;1

s
i+1
1;2

s
i+1
1;0

t
i+1
1

s
i+2
0;0

s
i�1
1;0

t
i�1
1

slice�i

iteration iti
0

head
i+1
0

Figure 4. Iterations and slices. We have ab-
breviated tail with t and subhead with s.

Definition 11 The iteration subheader q of headip, denoted
subheadip;q, is the subsequence of headip that contains the
following operations.

� If q = p, then subheadip;p contains all the operations
issued before apply updates() is executed with the set
updates(p+1) mod n.

� If q = (p�1)mod n, then subheadip;q contains all the
operations issued after apply updates() is executed
with the set updatesq.

� Otherwise, subheadip;q contains all the operations is-
sued after apply updates(messq) is executed with the
set updatesq and before it is executed with the set
updates(q+1) mod n.

Clearly, if the first write operation in itip is issued before
apply updates() is executed with the set updatesq, then
subheadip;q is the empty sequence (see iti�1

2 in Fig. 4).

To simplify the notation and the analysis, we assume that
no operation is issued by any process before it executes
send updates() for the first time. This allows us to de-
fine, for any p and q, the sequences it0p, tail0p, head0p, and
subhead0p;q as empty sequences.

With these definitions, we divide now the computation �
in slices (see Fig. 4).

Definition 12 The ith slice of computation �, denoted
�i, i � 0, is the subsequence of � formed by the
sequences tailip;8p, subheadip;q;8p; q : p > q, and
subheadi+1

p;q ;8p; q : p � q.

Note that, if we consider �0 the first slice, every operations
in � is in one and only one slice. There are subheaders of
iteration 0 that are not assigned to any slice, but since by
definition they are empty, they do not need further consid-
eration. The slice is the basic unit that we will use to define
the sequential order that our algorithm enforces. We present
now the sequential order for each slice separately. The order
for the whole computations is obtained by simply concate-
nating the slices in their numerical order. Hence, we define

now, for each slice �i, the permutation � i which contains
all the operations of the slice in the sequential order.

Definition 13 The sequence � i is obtained by concatenat-
ing the sequences that form the slice �i as follows.

taili0 ! subheadi+1
0;0 ! subheadi1;0 ! subheadi2;0 !

:::! subheadin�1;0 !

taili1 ! subheadi+1
0;1 ! subheadi+1

1;1 ! subheadi2;1 !
:::! subheadin�1;1 !
� � �

tailip ! subheadi+1
0;p !

:::! subheadi+1
p;p ! subheadip+1;p !

:::! subheadin�1;p !
� � �

tailin�1 ! subheadi+1
0;n�1 ! subheadi+1

1;n�1 !

subheadi+1
2;n�1 ! :::! subheadi+1

n�1;n�1

In fact, this is only one of many ways to order the sequences
of the slice to obtain a sequential order.

We define now the sequence �, which we claim is a se-
quential view of �.

Definition 14 The sequence � is the permutation of � ob-
tained by the concatenation of all sequences � i in order

(i.e., �i
�
! �i+1;8i � 0).

From the above definitions, in �, we have that tail ip
�
! tailjq

if and only if either i < j or i = j and p < q. This is
exactly the order in which the sets associated with each tail
are processed and applied in the algorithm.

We show in the following lemmas that � is in fact a se-
quential view of �.

Lemma 4 Each prefix of � preserves the program order
��.

Proof: Let op and op0 be two operations of some prefix of
� such that op �� op0. Then, from Definition 4, op and op 0

must belong to the same process and op
�
! op0. It is easy to

check from the above definitions of � and � i that operations
from the same process appear in the same order in � as in

�. Hence, op
�
! op0, and therefore op

! op0.

The proof of the following lemma is omitted due to space
limitation.

Lemma 5 For every read operation op = r(x)v in �, the
nearest previous write operation in � on the variable x is
op0 = w(x)v.

Lemma 6 Each prefix of � is legal.

Proof: Let be a prefix of �. Let us consider a read
operation op = r(x)v in . From Lemma 5, the previous
write on x in �, and hence in , is op0 = w(x)v. Therefore,
from Definition 1 has to be legal.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

Lemma 7 � is a sequential view of � and, therefore, � is a
sequential computation.

Proof: From Lemma 4, each prefix of � preserves the
program order ��. Also, from Lemma 6, each prefix of �
is legal. Hence, from Definition 4, � is a sequential view of
�. Then, � is a sequential computation.

Theorem 2 The algorithm A(sequential) implements se-
quential consistency.

Proof: From Lemma 7, every computation � observed in
the execution of the algorithm A(sequential) is sequen-
tial. Hence, from Definition 6, the algorithm is sequential.

6. A(cache) Implements Cache Consistency

In this section, we show that the algorithm A, exe-
cuted with the parameter cache in each process, implements
cache consistency. In the rest of this section we assume that
� is a computation observed in the execution of the algo-
rithm A(cache), and �(x) is a sequence formed by all the
operations in � on the variable x.

The proof of correcteness follows the same lines as the
proof of correctness for A(sequential), but on �(x) in-
stead of �. First we define the sequences it(x)ip, tail(x)ip,
head(x)ip, subhead(x)ip;q, and the slice �(x)i of �(x).
Then we construct the sequence �(x) from these sequences
in a similar way as the sequence � was defined in Section 5.
A version for �(x) of Lemma 4 is directly derived. In a
version for �(x) of Lemma 5 with the above sequences the
case 3 dissapears, while the version of Lemma 6 is basically
the same. Hence we have that �(x) is a cache view of �(x),
and therefore�(x) is a cache computation. Since this is true
for any variable x, we have the following theorem.

Theorem 3 The algorithm A(cache) implements cache
consistency.

The details are ommitted due to space limitation.

7. Complexity Measures

Worst-Case Response Time In this section we consider
that local operations are executed instantaneously (i.e., in
0 time units) and that any communication takes d time
units. In the algorithm A executed with parameter causal
or cache all operations are executed locally, while when
executed with parameter sequential all write and some
read operations are also executed locally. Therefore, the
response time for them is always 0.

Let us now consider a read operation that is blocked in al-
gorithm A(sequential). To obtain the maximum response
time for such a read operation, we will consider the worst
case. This can happen if the operation blocks (almost) im-
mediately after the process that issued it sent a message.
Then, the read operation will be blocked until the turn of
this process again, which can take up to n message trans-
missions. Therefore, in the worst case, a process will have
to wait nd time units.

The previous analysis assumes that the messages are
never delayed at the processes. However, the protocol al-
lows the processes to control when to send the messages.
For instance, it is possible for a process p, when turnp = p,
to wait a time T before executing its task send updates()
(see Fig. 1). Thus, we can reduce the number of messages
sent by this process per unit of time. Obviously, this can
increase the response time, since in this case the delay time
of a message sent by p, in the worst case, will be T + d.

Message Size It is easy to check in Fig. 1 that the size of
the list updatesp of process p depends on the number of
write operations performed by p during each round, which
can be very high. However, the number of pairs (x; v) in
updatesp will be, at most, the same as the number of shared
variables, since we only hold at most one pair for each vari-
able.

The bound obtained may seem extremely bad. However,
note that the real number of pairs in a set updatesp really
depends on the frequency f of write operations and the ro-
tation time nd. Hence if we have a write operation on a
variable every milisecond, in a system with 100 processes
and 1 milisecond of delay, we will have at most 100 pairs in
the set updatesp broadcasted, which is a reasonable num-
ber.

Furthermore, note that most algorithms that implement
propagation and full replication send a message for every
write operation that is performed. This would mean that 100
messages would have to be sent. With our algorithm, only
one pair per variable is sent, and all of them are grouped
into one single message. With the overhead per message in
current networks, this implies a significant saving in band-
width.

Memory Space Finally, note that we do not require the
communication channels among processes to deliver mes-
sages in order. Hence, a process could have received mes-
sages that are held until the message from the appropriate
process arrives. It is easy to check that the maximum num-
ber of messages that will ever be held is n� 2.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

8. Conclusions and Future Work

In this paper, we have presented a parametrized algo-
rithm that implements sequential, causal, and cache consis-
tency on a distributed system. To our knowledge, this is the
first algorithm that implements cache consistency.

The algorithm presented in this paper guarantees fast op-
erations in its causal and cache executions. It is proven in
[10] and [4] that it is imposible to have a sequential algo-
rithm with all operations fast. The algorithm presented in
this paper guarantees in its sequential execution fast writes
and reduces to only one case the reads that can not be exe-
cuted locally.

Considering possible extensions of this work for the se-
quential version, we would like to know how many read
operations are fast in real applications with several system
parameters. Our belief is that most read operations will be
fast. A second line of work has to do with the scalability of
the protocol. The worst case response time is linear on the
number of processes. Hence, it will not scale well, since it
may become high when the system has a large number of
processes. It would be nice to remove this dependency. Fi-
nally, the protocol works in a token passing fashion, which
can be very risky in an environment with failures, since a
single failure can block the whole system. It would be in-
teresting to extend the protocol with fault tolerance features.

References

[1] S.V. Adve. Designing Memory Consistency Models
for Shared-Memory Multiprocessors. PhD thesis, Uni-
versity of Wisconsin-Madison, 1993.

[2] Yehuda Afek, Geoffrey Brown, and Michael Mer-
ritt. Lazy caching. ACM Transactions on Program-
ming Languages and Systems, 15(1):182–205, Jan-
uary 1993.

[3] M. Ahamad, G. Neiger, J.E. Burns, P. Kohli, and P.W.
Hutto. Causal memory: Definitions, implementation
and programming. Distributed Computing, 9(1):37–
49, August 1995.

[4] H. Attiya and J.L. Welch. Sequential consistency ver-
sus linearizability. ACM Transactions on Computer
Systems, 12(2):91–122, 1994.

[5] V. Cholvi. Specification of the behavior of memory
operations in distributed systems. Parallel Processing
Letters, 8(4):589–598, December 1998.

[6] Alan Fekete, M. Frans Kaashoek, and Nancy Lynch.
Implementing sequentially consistent shared objects
using broadcast and point-to-point communication.
Journal of the ACM, 45(1):35–69, January 1998.

[7] J.R. Goodman. Cache consistency and sequential con-
sistency. Technical Report 61, IEEE Scalable Coher-
ence Interface Working Group, March 1989.

[8] M.P. Herlihy and J.M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Sys-
tems, 12(3):463–492, July 1990.

[9] L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computers, 28(9):690–691, Septem-
ber 1979.

[10] R.J. Lipton and J.S. Sandberg. PRAM: A scalable
shared memory. Technical Report CS-TR-180-88,
Princeton University, Department of Computer Sci-
ence, September 1988.

[11] R. Prakash, M. Raynal, and M. Singhal. An adaptive
causal ordering algorithm suited to mobile comput-
ing environments. Journal of Parallel and Distributed
Computing, 41:190–204, 1997.

[12] M. Raynal and M. Ahamad. Exploiting write seman-
tics in implementing partially replicated causal ob-
jects. In Proceedings of the 6th EUROMICRO Con-
ference on Parallel and Distributed Computing, pages
157–163, Feb 1998.

[13] A.K. Singh. Bounded timestamps in process net-
works. Parallel Processing Letters, 6(2):259–264,
1996.

[14] H.S. Sinha. Mermera: Non-Coherent Distributed
Shared Memory for Parallel Computing. PhD the-
sis, Computer Science Department, Boston Univer-
sity, April 1993.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

