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Abstract

Unreliable failure detectors are oracles that give information about process failures. Chandra and Toueg
were first to study such failure detectors for distributed systems, and they identified a number that enabled
the solution of the Consensus problem in asynchronous distributed systems. This paper focuses on two of
these, denoted S (strong) and }S (eventually strong). The characteristics of a given unreliable failure
detector are usually described by its completeness and accuracy properties. Completeness is a requirement
on the actual detection of failures, while accuracy limits the mistakes a failure detector can make. Let the
scope of the accuracy property of an unreliable failure detector be the minimum number ðkÞ of processes
that may not erroneously suspect a correct process to have crashed. Usual failure detectors implicitly
consider a scope equal to n (the total number of processes). Accuracy properties with limited scope give rise
to the classes of failure detectors that we call Sk and }Sk: This paper investigates the following question:
‘‘Given Sk and }Sk; under which condition is it possible to transform their failure detectors into their
counterparts with unlimited accuracy, i.e., S and }S?’’. The paper answers this question in the following
way. It first presents a particularly simple protocol that realizes such a transformation when fok (where f

is the maximum number of processes that may crash). Then, it shows that there is no reduction protocol
when fXk:
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1. Introduction

Background: It has been proven that several practical agreement problems such as atomic

broadcast, leader election, group membership and atomic commit, encountered in the design of
reliable applications built on top of unreliable asynchronous distributed systems, cannot be solved
in a deterministic way [5,9]. Many agreement problems can be characterized by a single problem,
namely the Consensus problem. This means that any solution to Consensus can be used as a
building block on top of which solutions to particular agreement problems can be designed. From
a theoretical point of view, this means that an agreement problem cannot be solved in systems
where Consensus cannot be solved. This is due to the uncertainty created by asynchrony and
failures: their combination can actually prevent processes from making consistent decisions.1

From an operational point of view, this is due to the impossibility of a process distinguishing a
failed process from a slow process or from a process with which communications are very slow.
Solving such distributed computing problems requires augmenting the asynchronous distributed
system with some synchrony assumptions. Minimal Synchronism [3] and Partial Synchrony [4]
have been advances in this direction. The additional assumptions required to solve such problems
in the presence of process crashes have been abstracted in a modular way by Chandra and Toueg
in their definition of the Unreliable Failure Detector concept [1]. This paper considers
asynchronous distributed systems equipped with such unreliable failure detectors.
A failure detector can informally be seen as a set of oracles, one per process. The failure-

detector module (oracle) associated with a process provides with a list of processes it guesses have
crashed. A failure detector can make mistakes by not suspecting a crashed process, or by
erroneously suspecting a correct process. In their seminal paper, Chandra and Toueg defined two
types of properties that characterize classes of failure detectors. A class is defined by a
Completeness property and an Accuracy property. A completeness property concerns the actual
detection of crashes. The completeness property in which we are interested basically states that
‘‘every crashed process is eventually suspected by every correct process’’. An accuracy property
limits the erroneous suspicions a failure detector can make. In this paper, we are mainly interested
in Weak Accuracy. This property basically states that ‘‘there is a correct process that is not
suspected’’. Weak accuracy is perpetual if it must be satisfied at all times. It is eventual if it may be
satisfied only after some (unknown but finite) time. The class of failure detectors satisfying
completeness and perpetual (respectively, eventual) weak accuracy is denoted S (respectively,
}S). S-based Consensus protocols were developed by Chandra and Toueg [1] and by
Mostefaoui and Raynal [10]. They assume fon; where n is the number of processes in the system
and f is the maximum number that may crash. }S-based Consensus protocols were developed
by Chandra and Toueg, by Hurfin, Mostefaoui and Raynal [7,8,10], and by Schiper [14]. The
}S-based protocols all require fon=2; Chandra and Toueg proved that this requirement is
necessary. Thus, these protocols are all optimal with respect to the maximum number of crashes
that can be tolerated.

Problem and results: The weak accuracy properties implicitly have a scope spanning the whole
system: there is a correct process that is not suspected by any other process (either always or after
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1This means that in some circumstances, some processes cannot progress (and a liveness property may be violated) or

their decisions are inconsistent (and a safety property may be violated).
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some time). Here, the important issue is that the ‘‘non-suspicion of a correct process’’ concerns all
processes. In this paper, we investigate failure-detector classes whose accuracy property has a
limited scope: the number of processes that are required not to suspect a correct process is limited
to k (kpn; where n is the total number of processes).
The parameter k defines the scope of the weak accuracy property, thereby giving rise to the

classes Sk and }Sk of unreliable failure detectors (Sn and }Sn are identical to S and }S;
respectively). Practically, this means that there is a (not statically predefined) set of k processes,
containing a correct process, whose failure-detector modules do not suspect that correct process.
An important question then is the following:

‘‘Is there a necessary and sufficient condition that allows transformation of any failure detector
in Sk (respectively, }Sk) into a failure detector in S (respectively, }S)?’’

This paper answers this question in the following way (recall that f is the maximum number of
processes that may crash):

* First, a protocol is presented that transforms any failure detector FDin into a failure detector
FDout such that (1) if FDinASk; then FDoutAS and (2) if FDinA}Sk; then FDoutA}S: This
protocol requires fok:

* Then, it is shown that there is no protocol that transforms any failure detector in Sk

(respectively, }Sk) into a failure detector in S (respectively, }S) when fXk:

Notice that the correctness condition of the transformation protocol (namely, fok) does not
require the assumption that a majority of processes always remain correct. This has an interesting
practical consequence: when f is small (i.e., 5n), k (the accuracy scope) too can be small (5n).
This is particularly attractive when facing fault-tolerance or scaling problems. In an extreme
example, this means that the Consensus problem can be solved in presence of one process failure
(i.e., f ¼ 1) in an asynchronous distributed system equipped with a failure detector in S2; since
the transformation protocol yields a failure detector in S which can be used to solve Consensus
[1]. (S2 contains failure detectors for which there is a correct process pi that is never suspected by
some other process pj:)
The paper is made up of six sections. Section 2 introduces the computation model and the

failure detectors of Chandra and Toueg. Section 3 defines the classes of limited accuracy failure
detectors. Section 4.1 then presents and proves correct, for fok; a protocol transforming Sk

(respectively, }Sk) into S (respectively, }S). Section 5 shows there is no such protocol when
fXk: Finally, Section 6 concludes the paper.

2. Asynchronous distributed systems and unreliable failure detectors

2.1. Asynchronous systems with process crashes and fair lossy links

We consider a system to consist of a finite set P of n41 processes, namely, P ¼ fp1; p2;y; png:
Each process has a unique identity. A process can fail by crashing, i.e., by prematurely halting.
It behaves correctly (i.e., according to its specification) until it (possibly) crashes. By definition,
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a correct process is a process that does not crash. A faulty process is a process that is not correct.
As previously indicated, fon denotes the maximum number of processes that can crash.
Processes communicate and synchronize by sending and receiving messages through channels.

Every pair of processes is connected by a channel. Channels do not create or alter messages. They
are not required to deliver messages in order. Moreover, they may lose messages provided that, if
a process pi sends an infinite number of messages to a process pj and if pj executes receive actions

infinitely often, pj receives an infinite number of messages from pi (this is a fair lossy channel

assumption). Finally, there is no assumption about the relative speed of processes or message
transfer delays.
The protocol proposed in Section 4 is correct under the assumptions detailed above; it tolerates

fair lossy channels that may deliver messages out of order. The impossibility result of Section 5
applies even to systems with channels that never lose message and always deliver them in order.

2.2. Chandra–Toueg’s unreliable failure detectors

Informally, a failure detector consists of a set of modules, each one attached to a process: the
module attached to pi maintains a set (named suspectedi) of processes it currently suspects to have
crashed. Any failure-detector module is inherently unreliable: it can make mistakes by not
suspecting a crashed process or by erroneously suspecting a correct one. Moreover, suspicions are
not necessarily stable: a process pj can be added to or removed from a set suspectedi according to

whether pi’s failure-detector module currently suspects pj or not. As in other papers devoted to

failure detectors, we say ‘‘process pi suspects process pj’’ at some time t; if we have pjAsuspectedi

at that time.
As indicated in Section 1, a failure-detector class is formally defined by two abstract properties,

namely a Completeness property and an Accuracy property. In this paper, we consider the
following completeness property defined by Chandra and Toueg [1]:

* Strong Completeness: Eventually, every process that crashes is permanently suspected by every
correct process.

Among the accuracy properties defined by Chandra and Toueg we consider here the
following two:

* Perpetual Weak Accuracy: Some correct process is never suspected by any process.
* Eventual Weak Accuracy: There is a time after which some correct process is never suspected by

any process.

Combined with Strong Completeness, these accuracy properties define the following two classes
of failure detectors [1]:

* S: The class of Strong failure detectors. This class contains all the failure detectors that satisfy
the strong completeness property and the perpetual weak accuracy property.

* }S: The class of Eventually Strong failure detectors. This class contains all the failure
detectors that satisfy the strong completeness property and the eventual weak accuracy
property.

Clearly, SD}S:
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3. Failure detectors with limited weak accuracy

3.1. Limited weak accuracy

As noted in Section 2.2, the weak accuracy properties involve all the correct processes, and
consequently spans the whole system. This ‘‘whole-system spanning’’ suggests that weak accuracy
might be easier to satisfy if it involved only a subset of processes (one of which is correct and never
suspected by the others). This observation motivates the following definition, where the parameter
k defines the scope of the accuracy property. For set of processes Q and process pAQ; k-accuracy
is /Q; pS—satisfied if the following hold:

1. Scope: jQj ¼ k:
2. No suspicion: p is correct and is not suspected by any process qAQ:

A failure detector satisfies perpetual (respectively, eventual) weak k-accuracy is satisfied if, for
each execution, there is a set of processes Q and process pAQ such that k-accuracy is /Q; pS—
satisfied at all times (respectively, after some point in time) in that execution. (Different executions
may use different sets Q and processes p:) Given a scope parameter k; we get the two following
classes of failure detectors in the style of Chandra and Toueg:

* Sk: This class contains all the failure detectors that satisfy strong completeness and perpetual
weak k-accuracy.

* }Sk: This class contains all the failure detectors that satisfy strong completeness and eventual
weak k-accuracy.

Clearly, SkD}Sk and, for each kon; Skþ1DSk and }Skþ1D}Sk: It is easy to see that
‘‘traditional’’ (unlimited) weak accuracy is obtained with k ¼ n: More precisely, Sn ¼ S and
}Sn ¼ }S: Moreover, S1 contains failure detectors whose accuracy need have no scope (i.e.,
such failure detector need not provide any information). For this reason, the rest of this paper
considers only failure detectors with k-accuracy where k41:

3.2. Related work

Guerraoui and Schiper [6] used failure detectors with a kind of limited-scope accuracy to address
problems raised by distributed system partitioning. They assumed that a minority of processes
crash and that the scope of the failure detector comprises a majority of processes, i.e., fon=2ok:
Failure detectors with limited-scope accuracy (or limited-scope failure detectors) were previously

investigated by Yang et al. [15], who defined the failure-detector classes Sk and }Sk using a
slightly different notation (they used Sk for the class denoted here Snþ1	k). A part of their work
focused on the K-set agreement problem.2 They proved that K-set agreement can be solved (1)
with Snþ1	K for any number of failures and (2) with }Snþ1	K if n42f :
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2The K-set agreement problem [2] allows study of the relation between the number of choices allowed for decided

values and the maximum number of crashes. It is a generalization of the Consensus problem: distinct processes can

decide on different values, but the number of decided values must be at most K : There are trivial protocols solving the

K-set agreement problem if foK : Without a failure detector, there is no solution when fXK : (Note that the 1-set

agreement problem is the Consensus problem.)
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A }Sk-based Consensus protocol was presented by Mostefaoui and Raynal [11]. It requires
fominðk; n=2Þ: The same authors also investigated limited-scope failure detectors to solve the
K-set agreement problem [12]. They proposed two protocols. The first considers an underlying
failure detector of the classSk and requires foK þ k 	 1: The second considers a failure detector
of the class }Sk and requires fomaxðK ;max1papKðminðn 	 aIn=ðaþ 1Þm; aþ k 	 1ÞÞÞ:
Failure detectors where both the completeness property and the accuracy property hold on

subsets of correct processes have been investigated by Raynal and Tronel [13]. Their completeness
and accuracy properties are restricted in the following sense: they are not required to involve all
the correct processes but only k1 and k2 of them (k1 are involved in the completeness property,
and k2 in the accuracy property). It is shown that transforming such restricted failure detectors
into their non-restricted counterparts requires k1 þ k24n (for the transformation to be safe) and
maxðk1; k2Þpn 	 f (for the transformation to be live).

4. From k-accuracy to full accuracy

This section describes a protocol for process pi (given in Fig. 1) that transforms any failure
detector of either class Sk or }Sk into a failure detector the corresponding class with unlimited
accuracy. That is, if the input failure detector is in Sk (respectively, }Sk), then the resulting
failure detector is in S (respectively, }S). Although the constant k does not appear explicitly in
the protocol text, the protocol’s correctness condition requires fok (see Section 4.2).
Surprisingly, the proposed transformation protocol is quite simple.

4.1. A protocol

In Fig. 1, process pi consults its underlying failure detector (Sk or }Sk) whenever it refers
to the set pseudovariable lim suspecti: If pcAlim suspecti; we say ‘‘pi lim-suspects pc’’.
The protocol provides the upper layer with a set denoted suspectedi: When cAsuspectedi we say
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Fig. 1. Protocol to convert from Sk (or }Sk) to S (or }S) for process pi (requires fok).
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‘‘pi suspects pc’’. Section 4.2 will prove that the sets suspecti have the properties required of the
target failure detector (S or }S).
To ensure that the suspectedi sets satisfy the properties defined by S (respectively, }S),

processes continually exchange their lim suspecti sets. More precisely, pi’s behavior is made up of
two tasks. The task T1 periodically sends lim suspecti to all processes (including itself). The task
T2 is an infinite loop in which pi first receives lim suspect sets from ðn 	 f Þ distinct processes and
then defines the current value of suspectedi as their intersection.

4.2. Proof of correctness

Theorem 1. Let fok: The protocol described in Fig. 1 transforms any failure detector in Sk

(respectively, in }Sk) into a failure detector in S (respectively, in }S).

Proof. The proof comprises two parts, addressing the strong completeness property and the
perpetual/eventual weak accuracy property, respectively.
1. Strong completeness: Note first that (by assumption) the underlying failure detector (whether

it belongs to Sk or to }Sk) satisfies strong completeness. We show that the protocol preserves
this property, i.e., if a process pc crashes and if pi is correct, then eventually pc remains
permanently in suspectedi:
First observe that there is a time t after which all faulty processes have crashed. Moreover,

there is a time t0Xt after which all suspicion messages that are received (1) have been
sent by correct processes and (2) carry the identity of pc (as the underlying failure detector
satisfies strong completeness). Furthermore, as at most f processes crash and the channels
are fair lossy, each correct process pi infinitely often receives suspicion messages from
ðn 	 f Þ different processes, and after t0 all those messages carry the identity of pc: It
follows that, after t0; line 5 is executed infinitely often and, each time it is executed after t0; pc

belongs to X : Thus, there is a time after which every crashed process is suspected by every correct
process.
2. Perpetual/eventual weak accuracy: Consider first the case in which the underlying failure

detector belongs to }Sk: Thus, the lim suspecti sets satisfy eventual weak k-accuracy. We show
that the suspectedi sets satisfy eventual weak accuracy.
Consider a specific execution of the protocol. By definition, there is a set of a processes Q and a

process pAQ such that k-accuracy is /Q; pS—satisfied after some point in time in that execution.
More specifically, there is a time t; a set Q; and a correct process pAQ such that jQj ¼ k and, after
t; p is never lim-suspected by any of the processes in Q: Let t0Xt be a time after which no
suspicion messages are received that were sent by the processes of Q before t:
After t0; p can appear in the suspicion messages of at most ðn 	 kÞ processes (namely the

processes in P	 Q). As k4f ; we have n 	 f4n 	 k; from which we conclude that, at line 4, there
is at least one suspicion message that does not carry the identity of p: It follows that after t0; p can
no longer appear in a set suspectedi for any process pi: Hence, the eventual weak accuracy
property holds.
If the underlying lim suspecti sets satisfy perpetual weak k-accuracy (i.e., the underlying failure

detector belongs to Sk), the proof that the suspectedi sets satisfy perpetual weak accuracy
property is the same as previously, considering t ¼ t0 ¼ 0: &
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5. An impossibility result

The previous transformation relies on the condition fok: This section shows that this
condition is actually necessary: no such transformation is possible if fXk40: The proof of the
impossibility result relies on the following lemma.

Lemma 1. There is no protocol that implements a failure detector of class }S in an asynchronous

distributed system where f40:

Proof. The proof is by contradiction and is as follows. We first assume that there is a protocol P
implementing a failure detector FD of the class }S in an asynchronous system S with n4f40:
We then use the strong completeness property of FD to construct a fault-free execution of the
protocol P in which FD does not satisfy the eventual weak accuracy property. Since FD was
assumed to be in }S and thus satisfy eventual weak accuracy in all executions, we will have a
contradiction, implying that protocol P cannot exist.
For the sake of contradiction, assume there is a protocol P implementing FD; a failure

detector in the class }S in system S: P thus provides each process pi; 1pipn; with a set
suspectedi (holding the processes that pi currently suspects). We use suspectediðtÞ to denote the
value of such a set at time t: We will construct an execution E of P in S such that the following
both hold:

1. E is fault-free (no process fails).
2. There is an infinite sequence of times t1ot2ot3o? such that, for all i40; process

pðði	1Þ mod nÞþ1 is suspected by all other processes at time ti (i.e., ð8jaðði 	 1Þmod nÞ þ 1Þ
ðpðði	1Þ mod nÞþ1AsuspectedjðtiÞÞ).

Clearly, in the execution E of P; each process is infinitely often suspected by the other processes
and, consequently, the eventual weak accuracy is not satisfied.
For simplicity, we define t0 ¼ 0: We will construct execution E inductively. For iX0; assume

that E is already constructed up to time ti	1 (t0 in the base case); we show how to define ti

and construct the interval ðti	1; ti� of the execution E such that item (2) above is satisfied for the
value i:
Consider another execution Ei of P in S that is identical to E up to time ti	1 and in which

pðði	1Þ mod nÞþ1 crashes after ti	1 and all other processes are correct. By strong completeness, there is

some time t after which P has all correct processes (i.e., all but pðði	1Þ mod nÞþ1) permanently suspect

pðði	1Þ mod nÞþ1: Let ti ¼ max ðt; ti	1 þ 1Þ; and make E behave in the interval ðti	1; ti� as follows:

* Process pðði	1Þ mod nÞþ1 does not crash, but all the messages it sends during this interval remain

undelivered at the end of the interval (namely, at ti). Messages sent by pðði	1Þ mod nÞþ1 in ½0; ti	1�
but not delivered in that interval are delivered (or not) in ðti	1; ti� of E exactly as they are (or
not) in that interval of Ei:

* The other processes behave as they do in the interval ðti	1 þ 1; ti� of Ei: Messages sent by these
processes in ½0; ti� of E but not delivered in ½0; ti	1� are delivered (or not) in ðti	1; ti� of E exactly
as they are (or not) in that interval of Ei:
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The above imply that each process pj; jaðði 	 1Þmod nÞ þ 1 cannot distinguish executions Ei

and E through time ti: Since all processes but pðði	1Þ mod nÞþ1 suspect pðði	1Þ mod nÞþ1 at time ti of Ei;

they also suspect pðði	1Þ mod nÞþ1 at time ti of E:

Repeating this process for every i40; we construct an infinite sequence of intervals that
constitutes the execution E: Hence we have the execution E that has properties 1 and 2 mentioned
above, which completes the proof. &

Lemma 2. Let fXk40: There is no protocol transforming any failure detector in Sk into a failure
detector in }S:

Proof. Consider a system S with n processes of which up to fXk may fail. Assume for a
contradiction that, in S; any failure detector inSk can be converted into a failure detector in}S:
Partition P ¼ fp1; p2;y; png into sets A and B as follows: A ¼ fpij1pipn 	 ðk 	 1Þg and B ¼
fpjjn 	 ðk 	 1Þojpng: Note that jBj ¼ k 	 1of : Consider a failure detector FD with the

following properties:

� In executions in which all processes in B crash (such crashes can occur as fXk4jBj), the
process suspicions are as follows:
3 Each process in A always suspects all processes except itself.
3 Each process in B never suspects any process.

� In executions in which some process in B is correct, FD satisfies strong completeness and
perpetual weak accuracy.

Let us first show that FD is in the class Sk: This is done through the following cases:

* Consider any execution in which all processes in B crash. This implies that each correct process
always suspects all processes except itself; thus, each correct process eventually permanently
suspects all faulty processes, satisfying strong completeness. In addition, let pAA be a correct
process (such a process must exist as n4f ) and consider the set Q ¼ fpg,B: Clearly, jQj ¼ k

and Q contains a correct process, p:Moreover, no process in Q ever suspects p: p never suspects
itself, and the other processes in Q never suspect any process. Thus, k-accuracy is always
/Q; pS—satisfied in this execution. Thus, FD satisfies perpetual weak k-accuracy.

* Consider any execution in which some process in B is correct. By definition, the failure detector
satisfies strong completeness and perpetual weak accuracy. The latter implies that it always
/Q; pS—satisfies k-accuracy for any set Q such that pAQ and jQj ¼ k: Thus, FD satisfies
perpetual weak k-accuracy.

Assume for a contradiction that C is a protocol that transforms FD into a failure detector in

}S: Let S0 be a system made up of a set P0 of n0 ¼ n 	 ðk 	 1Þ processes p1;y; pn	ðk	1Þ of which

f 0 ¼ f 	 ðk 	 1Þ can fail (notice fXk implies f 040). We will use C to construct a protocol C0 that
will implement a failure detector of class }S in S0 with no underlying failure detector.

C0 has each process piAP0 emulate protocol C; running it with the following exceptions:

* pi never sends a message to any pj; n 	 ðk 	 1Þojpn (there is no such pjAP0).
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* Whenever C would have pi consult FD; C0 has pi behave as if FD has returned the set X ¼
fpcj1pcpn4caig: (Notice that this is consistent with the definition of FD when all the
processes in B have crashed.)

* Whenever C would report a set X for }S in S; C0 will report X \B in S0:

We now show that the protocol C0 implements a failure detector of the class }S in S0 without
the help of an underlying failure detector. Let us consider any execution E0 of C0 in S0: The
processes’ emulation of C corresponds exactly to their behavior in an execution E of C in S with
FD in which each process in B crashes before sending any message (thus the following refers only
to pi such that 1pipn 	 ðk 	 1Þ). Because C implements a failure detector of class }S in S
augmented with FD (from Sk), we conclude that C0 implements a failure detector of class }S in

S0 with no underlying failure detector. More precisely, we have the following:

* Strong Completeness: If a process pi crashes in E0 during the emulation C0; the same process has
crashed in E and, by the strong completeness of C in S with FD; pi will be permanently
suspected by all correct processes in the emulation C0:

* Eventual Weak Accuracy: If pi is correct in E0; it is also correct in E: Thus, each process correct
in E will eventually never suspect pi in E: Since each process correct in E is also correct in E0

and any process suspected in E0 is also suspected in E; each process correct in E0 will eventually
never suspect pi in E0:
If a process pi is not suspected by some correct process pj (note that 1pi; jpn 	 ðk 	 1Þ) in

E; the same holds for the emulation C0; and consequently the failure detector obtained with C0

satisfies eventual weak accuracy.

Since f 040; C0 implements a failure detector of class }S in a system with at least one failure
and without the help of an underlying failure detector. This contradicts Lemma 1. Thus, the
assumption stating that Sk can be converted to }S in a system with fXk is erroneous. &

Theorem 2. Let fXk: There is no protocol transforming any failure detector in Sk (respectively,
}Sk) into a failure detector in S (respectively, }S).

Proof. This theorem follows directly from the definitions of Sk and }Sk (which states
SkD}Sk), the definitions of S and }S (which states SD}S), and Lemma 2. &

6. Conclusion

The scope of the accuracy property of an unreliable failure detector is the minimum number k
of processes that must not suspect a correct process. Such a scope definition has allowed us to
define the classes of failure detectors Sk and }Sk: The well-known failure detectors S and }S
implicitly consider a scope equal to n (the total number of processes).
This paper has addressed the following question: ‘‘Given Sk and }Sk; under which condition

is it possible to transform their failure detectors into failure detectors of S and }S;
respectively?’’. The paper has answered this question in the following way. Let Tðn; f ; kÞ be the
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predicate ‘‘there is a transformation from Sk (respectively, }Sk) to S (respectively, }S) in a
system with n processes of which f may fail’’. Sections 4.1 and 5 have shown the following:

ð8n; f ; kÞðfok3Tðn; f ; kÞÞ:
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