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Abstract

In Sensor Networks, the lack of topology information and the availability of only one communica-
tion channel has led research work to the use of randomization to deal with collision of transmissions.
However, the scarcest resource in this setting is the energy supply, and radio communication dominates
the sensor node energy consumption. Hence, redundant trials of transmission as used in randomized
protocols may be counter-effective. Additionally, most of the research work in Sensor Networks is ei-
ther heuristic or includes unreallistic assumptions. Hence, provable results for many basic problems still
remain to be given. In this paper, we study upper and lower bounds for deterministic communication
primitives under the harsh constraints of sensor nodes.

1 Introduction

The Sensor Network is a well-studied simplified abstraction of a radio-communication network where nodes
are deployed at random over a large area in order to monitor some physical event. Sensor Networks is a
very active research area, not only due to the potential applications of such a technology, but also because
well-known techniques used in networks cannot be straightforwardly implemented in sensor nodes, due to
harsh resource limitations such as energy or range of communication.

Sensor Networks are expected to be used in remote or hostile environments. Hence, random deployment
of nodes is frequently assumed. Although the density of nodes must be big enough to achieve connectivity,
precise location of specific nodes cannot be guaranteed in such scenario. Consequently, the topology of the
network is usually assumed to be unknown, except perhaps for bounds on the total number of nodes and the
maximum number of neighbors of any node. In addition, given that in Sensor Networks only one channel
of communication is assumed to be available, protocols must deal with collision of transmissions.

Most of the protocols for Sensor Networks use some form of randomness in order to deal with collisions
and the lack of topology information. Randomized protocols are usually fast and resilient to failures, but they
frequently rely on redundant transmissions. Given that the most restrictive resource in a Sensor Network
is energy and that the dominating factor in energy consumption is the radio communication, deterministic
algorithms may yield energy-efficient solutions. In this paper, deterministic communication primitives are
studied under the harsh restrictions of sensor nodes.
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1.1 Model

Given the limited range of sensor nodes we model the potential connectivity of nodes as a Geometric Graph
where n nodes are deployed in R2, and a pair of nodes is connected by an undirected edge if and only if they
are at an Euclidean distance of at most a parameter r.

Given the random deployment of nodes, we assume that the topology of the network is unknown. Never-
theless, such a deployment is not the result of an uncontrolled experiment where any outcome has a positive
probability. Hence, we assume that the network is connected and that the maximum degree, i.e., the max-
imum number of nodes located within a radius of r of any node, is a known value k − 1 < n. Each node
knows the total size of the network n, its unique identifier in {1, . . . , n} and the maximum degree k − 1.

Regarding the strong resource-limitations of sensor nodes, we use the comprehensive Weak Sensor
Model [11] unless otherwise stated. The following assumptions are included in this model. Time is as-
sumed to be slotted and all nodes have the same clock frequency, but no global synchronizing mechanism is
available. Furthermore, nodes are activated adversarially. The communication among neighboring nodes is
through broadcast on a shared channel where a node receives a message only if exactly one of its neighbors
transmits in a time slot. If more than one message is sent in the same time slot, a collision occurs and
no collision detection mechanism is available. Sensor nodes cannot receive and transmit in the same time
slot. The channel is assumed to have only two states: transmission and silence/collision. The memory size
of each sensor node is bounded by O(1) words of O(log n) bits. We assume that sensor nodes can adjust
their power of transmission but only to a constant number of levels. Other limitations include: limited life
cycle due to energy constraints, short transmission range, only one channel of communication, no position
information, and unreliability.

In a time slot, a node can be in one of three states, namely transmission, reception, or inactive. Through-
out the paper, we denote a temporal sequence of states of a node as a schedule of transmissions, or simply a
schedule when the context is clear. We will also refer to a node that is in the transmission or reception state
as active.

1.2 Problem Definition

An expected application of Sensor Networks is to continuously monitor some physical phenomena. Hence,
in this paper, the problem we address is to guarantee that each active node can communicate with all of its
neighboring active nodes infinitely many times. The actual use of such a capability will depend of course on
the availability of messages to be delivered. Our goal is to give guarantees on the energy cost and the time
delay of the communication only, leaving aside the overhead due to queuing or other factors.

In Radio Networks, messages are successfully delivered by means of non-colliding transmissions. Non-
colliding transmissions in single-hop Radio Networks are clearly defined: the number of transmitters must
be exactly one. However, in a multi-hop scenario such as Sensor Networks the same transmission may be
correctly received by some nodes and collide with other transmissions at other nodes. Thus, a more precise
definition is necessary. If in a given time slot exactly one of the adjacent neighbors of a node x transmits,
and x itself is not transmitting, we say that there was a clear reception at x in that time slot. Whereas, in
the case where a node transmits a message in a given time slot, and no other node within two hops of the
transmitter transmits in the same time slot, we say that there was a clear transmission. Notice that when a
clear transmission is produced by a node, all its neighbors clearly receive at the same time. Of course, in a
single-hop network both problems are identical.

In this paper, our goal is to guarantee that each node communicates with all of its at most k−1 neighbors.
Hence, a closely-related communication primitive known as selection is relevant for our purposes. In the
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selection problem, each of k active nodes of a single-hop Radio Network hold a different message that has to
be delivered to all the active nodes. Once its message is successfully transmitted, a node becomes inactive.
Given that we want to guarantee communication forever, in this paper, we give upper and lower bounds for
an extended version of the selection problem which we define as follows.

Definition 1. Given a single-hop Radio Network of n nodes where k of them are activated possibly at
different times, in order to solve the Recurring Selection problem every active node must clearly transmit
infinitely many times.

For multihop networks, based on the distinction between clear reception and transmission, we define the
following two problems.

Definition 2. Given a Sensor Network of n nodes and maximum degree k − 1, where nodes are activated
possibly at different times, and upon activation stay active forever, in order to solve the Recurring Reception
problem every active node must clearly receive from all of its active neighboring nodes infinitely many times.

Definition 3. Given a Sensor Network of n nodes and maximum degree k − 1, where nodes are activated
possibly at different times, and upon activation stay active forever, in order to solve the Recurring Transmis-
sion problem every active node must clearly transmit to all of its active neighboring nodes infinitely many
times.

Given that protocols for such problems run forever, we need to establish a metric to evaluate energy
cost and time efficiency. Let Ri

u(v) be the number of transmissions of u between the (i − 1)th and the ith

clear receptions from u at v, and Ru(v) = maxi R
i
u(v). In order to measure time we denote ∆Ri

u(v) the
time (number of time slots) that are between the (i − 1)th and the ith clear receptions from u at v, and
∆Ru(v) = maxi ∆Ri

u(v).
Similarly, Let T i(u) be the number of transmissions from u between the (i − 1)th and the ith clear

transmissions from u, and T (u) = maxi T
i(u); and let ∆T i(u) be the time between the (i − 1)th and the

ith clear transmission from u, and ∆T (u) = maxi ∆T i(u).
We define the message complexity of a protocol for Recurring Reception as max(u,v) Ru(v), over all

pairs (u, v) of adjacent nodes; and for Recurring Transmission as maxu T (u) over all nodes u. Also, we
define the delay of a protocol for Recurring Reception as max(u,v) ∆Ru(v), over all pairs (u, v) of adjacent
nodes; and for Recurring Transmission as maxu ∆T (u) over all nodes u.

Again, any of these definitions is valid for the Recurring Selection problem since a clear transmission
and a clear reception is the same event in a single-hop network.

Unless otherwise stated, throughout the paper we assume the presence of an adversary that gets to choose
the time step of activation of each node. Additionally, for Recurring Selection, the adversary gets to choose
which are the active nodes; and for Recurring Reception and Recurring Transmission, given a topology
where each node has at most k−1 adjacent nodes, the adversary gets to choose which is the identity of each
node. In other words, the adversary gets to choose which of the n schedules is assigned to each node.

Among the assumptions of the Weak Sensor Model are limited life cycle and unreliability. These con-
straints imply that nodes may power on and off many times during its life time. If such a behaviour were
adversarial, the delay of any protocol could be infinite. Therefore, we assume that active nodes that become
inactive are not activated back.

1.3 Related Work

To the best of our knowledge, recurring deterministic communication primitives have not been studied
previously even in the more general Radio Networks model. We briefly overview previous work closely
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related.
The question of how to diseminate information in Radio Networks has led to different well-studied

important problems such as Broadcast [1, 19] or Gossiping [3, 20]. However, deterministic solutions for
these problems [4, 5, 7, 9] include assumptions such as simultaneous startup or the availability of a global
clock, which are not feasible in Sensor Networks.

The selection problem previously defined was studied [18] in static and dynamic versions. In static
selection all nodes are assumed to start simultaneously, although the choice of which are the active nodes
is adversarial. Instead, in the dynamic version, the activation schedule, i.e. the time at which each node is
activated, is also adversarial.

A related line of work from combinatorics is (k, n)-selective families. Consider the subset of nodes that
transmit in each time slot. A family R of subsets of {1, . . . , n} is (k, n)-selective, for a positive integer k,
if for any subset Z of {1, . . . , n} such that |Z| ≤ k there is a set S ∈ R such that |S ∩ Z| = 1. In terms
of Radio Networks, in each time slot a node may transmit or receive. A set of n sequences of time slots
where a node transmits or receives is (k, n)-selective if for any subset Z of k nodes, there exists a time slot
in which exactly one node in the subset transmits. In [16] Indyk gave a constructive proof of the existence
of (k, n)-selective families of size O(k polylog n).

In the previous problem only one in every subset of k nodes must achieve a non-colliding transmission.
The following problem is a generalization to m ≤ k. Given integers m, k, n, with 1 ≤ m ≤ k ≤ n, we say
that a boolean matrix M with t rows and n columns is a (m, k, n)-selector if any submatrix of M obtained
by choosing arbitrarily k out of the n columns of M contains at least m distinct rows of the identity matrix
Ik. The integer t is the size of the (m, k, n)-selector. In [10] Dyachkov and Rykov showed that (m, k, n)-
selectors must have a size Ω(min{n, k2 logk n}) when m = k. Recently in [2], De Bonis, Ga̧sieniec
and Vaccaro showed that (k, k, n)-selectors must have size t ≥ (k − 1)2 log n/(4 log(k − 1) + O(1))
using superimposed codes. In the same paper, it was shown the existence of (k, k, n)-selectors of size
O(k2 ln(n/k)).

For the static selection problem, Komlos and Greenberg showed in [17] a non-constructive upper bound
of O(k log(n/k)) to achieve one successful transmission. More recently, Clementi, Monti, and Silvestri
showed for this problem in [8] a tight lower bound of Ω(k log(n/k)) using intersection-free families. For k
distinct successful transmissions, Kowalski presented in [18] an algorithm that uses (2`−1, 2`, n)-selectors
for each `. By combining this algorithm and the existence upper bound of [2] a O(k log(n/k)) is obtained.
Using Indyk’s constructive selector, a O(k polylog n) is also proved. These results take advantage of the
fact that in the selection problem nodes turn off upon successful transmission.

For dynamic selection, in [6], Chrobak, Ga̧sieniec and Kowalski proved the existence of O(k2 log n)
for dynamic 1-selection. In [18] Kowalski proved O(k2 log n) and claimed Ω(k2/ log k) both by using the
probabilistic method, and O(k2 polylog n) using Indyk’s selector.

Regarding randomized protocols, for a Sensor Network of diameter D, an optimal O(D + k) algorithm
for gossiping is presented in [13]. This algorithm includes a preprocessing phase that gives a structure to
the network that allows to achieve global synchronism and to implement a collision detection mechanism.
Based on that, the algorithm includes a phase in which all nodes transmit their message to all neighboring
nodes within O(k + log2 n log k) steps with high probabiliy. The expected message complexity of such
phase is O(log n + log2 k).

An non-adaptive randomized algorithm that achieves one clear transmission for each node w.h.p. in
O(k log n) steps was shown in [12]. The expected message complexity of such a protocol is O(log n). In
the same paper it was shown that such a running time is optimal for fair protocols, i.e., protocols where all
nodes are assumed to use the same probability of transmission in the same time slot.
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1.4 Our Results

Our objective is to find deterministic algorithms that minimize the message complexity and, among those, al-
gorithms that attempt to minimize the delay. As in [17], we say that a protocol is oblivious if the sequence of
transmissions of a node does not depend on the messages received. Otherwise, we call the protocol adaptive.
We study deterministic oblivious and adaptive protocols for Recurring Selection, Recurring Reception and
Recurring Transmission. These problems are particularly difficult due to the arbitrary activation schedule
of nodes. If we weaken the adversary assuming that all nodes are activated simultaneously, the following
well-known oblivious algorithm solves these problems optimally.

For each node i, node i transmits in time slot t = i + jn, ∀j ∈ N ∪ {0}.

The message complexity for this algorithm is 1 which of course is optimal. To see why the delay of n is
optimal for a protocol with message complexity 1, assume that there is an algorithm with smaller delay.
Then, there are at least two nodes that transmit in the same time slot. If these nodes are placed within
one-hop their transmissions will collide, hence increasing the message complexity.

We start our analysis with oblivious protocols. We first show that the message complexity of any oblivi-
ous deterministic protocol for these problems is at least k. Then, we present a message-complexity optimal
protocol, which we call Primed Selection, with delay O(kn log n). We then evaluate the time efficiency
of such a protocol studying lower bounds for these problems. Since a lower bound for Recurring Selec-
tion is also a lower bound for Recurring Reception and Recurring Transmission, we concentrate on the
first problem. By giving a mapping between (m, k, n)-selectors and Recurring Selection, we establish that
Ω(k2 log n/ log k) is a lower bound for the delay of any protocol that solves Recurring Selection. Maintain-
ing the optimal message complexity may be a good approach to improve this bound. However, the memory
size limitations motivates the study of protocols with some form of periodicity. Using a simple argument we
show that the delay of any protocol that solves Recurring Selection is in Ω(kn), for the important class of
equiperiodic protocols , i.e., protocols where each node transmits with a fixed frequency. Finally, we show
that choosing appropriately the periods that nodes use, for k ≤ n1/6 log log n Primed Selection is also optimal
delay wise for equiperiodic protocols. Given that most of the research work in Sensor Networks assumes a
logarithmic one-hop density of nodes, Primed Selection is optimal in general for most of the values of k and
the delay is only a logarithmic factor from optimal for arbitrary graphs.

Moving to adaptive protocols, we show how to implement a preprocessing phase using Primed Selection
so that the delay is reduced to O(k2 log k).

To the best of our knowledge, no lower bounds of the message complexity for recurring communication
with randomized oblivious protocols have been proved. Nevertheless, the best algorithm known to solve Re-
curring Selection w.h.p. is to repeatedly transmit with probability 1/k which solves the problem with delay
O(k log n) and expected message complexity in O(log n). Therefore, deterministic protocols outperform
this randomized algorithm for k ∈ o(log n) and for settings where the task has to be solved with probability
1.

1.5 Roadmap

Oblivious and adaptive protocols are studied in Sections 2 and 3 respectively. Lower bounds are studied for
message complexity in Section 2.1 and for the delay in Section 2.3. The Primed Selection oblivious protocol
is presented and analyzed in Section 2.2. An improvement of this algorithm for most of the values of k is
shown in Section 2.4 whereas an adaptive protocol that uses Primed Selection is given in Section 3.1. We
finish with some acknowledgements in Section 4.
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2 Oblivious Protocols

2.1 Message-Complexity Lower Bound

A lower bound on the message complexity of any protocol that solves Recurring Selection is also a lower
bound for Recurring Reception and Recurring Transmission. To see why, we map Recurring Selection into
Recurring Reception and viceversa. A similar argument can be given for Recurring Transmission.

Consider a single-hop Radio Network NS where Recurring Selection is solved and a Sensor Network
NR where Recurring Reception is solved. Consider the set of k active nodes in NS . There is at least one
node i with degree k − 1 in NR. Map any of the active nodes in NS to i and the remaining k − 1 active
nodes in NS to the neighbors of i in NR. The adversarial choice of which are the k active nodes in NS is
equivalent to the adversarial choice of which schedules of the protocol are assigned to i and its neighbors in
NR.

Now, for the sake of contradiction, assume that for any protocol that solves Recurring Selection, the
message complexity is at least s but there is a protocol P that solves Recurring Reception with message
complexity r < s. Then, we can use P to solve Recurring Selection as follows. Consider a node u adjacent
to i in NR. By definition of Recurring Selection, it is guaranteed that i receives from u every r transmissions
of u. Hence, every r transmissions of u there is at least one transmission of u that does not collide with any
other node adjacent to i. Since this is true for each of the nodes adjacent to i, Recurring Selection can be
solved with message complexity r which is a contradiction.

The proof of a k lower bound for message complexity is based in a simple argument and it is formalized
as follows.

Theorem 4. Any oblivious non-deterministic algorithm that solves the Recurring Selection problem, on an
n-node single-hop Radio Network where k nodes are activated, perhaps at different times, has a message
complexity of at least k.

Proof. Assume for the sake of contradiction that there exists a protocol such that some node i achieves a
non-colliding transmission every t < k transmissions. But then, an adversary can activate each of the other
k − 1 nodes in such a way that at least one transmission collides with each transmission of i within an
interval of t transmissions, which is a contradiction.

2.2 A Message-Complexity-Optimal Protocol: Primed Selection

In the following sections we present our Primed Selection protocol for deterministic communication. Such
a protocol solves Recurring Selection, Recurring Reception and Recurring Transmission with the same
asymptotic cost. For clarity, we first analyze the protocol for Recurring Selection, then we extend the
analysis to Recurring Reception and finally we argue why Recurring Transmission is solved with the same
asymptotic cost.

A static version of the Recurring Selection problem, where k nodes are activated simultaneously, may
also be of interest. For the case k = 2, a (k logk n)-delay protocol can be given recursively applying the
following approach. First, evenly split the nodes in two subsets. Then, in the first step one subset transmits
and the other receives and in the next one the roles are reversed. Finally, recursively apply the same process
to each subset.
Recurring Selection. We assume that the choice of which are the active nodes and the schedule of activa-
tions is adversarial. In principle, k different schedules might suffice to solve the problem. However, if only
s different schedules are used, for any s < n there exists a pair of nodes with the same schedule. Then,
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since the protocols are oblivious, if the adversary activates that pair at the same time the protocol would fail.
Instead, we define a set of schedules such that each node in the network is assigned a different one.

We assume that, for each node with ID i, a prime number p(i) has been stored in advance in its memory
so that p(1) = pj < p(2) = pj+1 . . . p(n) = pj+n−1. Where p` denotes the `-th prime number and pj is
the smallest prime number bigger than k. Notice that the biggest prime used is p(n) < pn+k ∈ O(n log n)
by the prime number theorem [15]. Hence, its bit size is in O(log n). Thus, this protocol works in a small-
memory model. The algorithm, which we call Primed Selection is simple to describe.

For each node i with assigned prime number p(i), node i transmits with period p(i).

Theorem 5. Given a one-hop Radio Network with n nodes, where k nodes are activated perhaps at different
times, Primed Selection solves the Recurring Selection problem with delay in O(kn log n) and the message
complexity per successful transmission is k, which is optimal as shown in Theorem 4.

Proof. If no transmission collides with any other transmission we are done, so let us assume that there are
some collisions. Consider a node i whose transmission collides with the transmission of a node j 6= i at
time tc. Since p(i) and p(j) are coprimes, the next collision among them occurs at tc + p(i)p(j). Since
p(i)p(j) > p(i)k, j does not collide with i within the next kp(i) steps. Node i transmits at least k times
within the interval (tc, tc + kp(i)]. There are at most k − 1 other active nodes that can collide with i.
But, due to the same reason, they can collide with i only once in the interval [tc, tc + kp(i)]. Therefore,
i transmits successfully at least once within this interval. In the worst case, i = n and the delay is in
O(kp(n)) ∈ O(kn log n). Since every node transmits successfully at least once every k transmissions, the
message complexity is k.

Recurring Reception. A protocol for Recurring Selection may be used to solve the Recurring Reception
problem. However, two additional issues appear, namely, the restrictions of sensor nodes and the interference
among one-hop neighborhoods. As mentioned before, Primed Selection works under the constraints of the
Weak Sensor Model. We show in this section that interference is also handled.

Recall that in the Recurring Reception problem n nodes of a Sensor Network are activated, possibly
at different times, the maximum number of neighbors of any node is bounded by some value k − 1 < n,
and every active node must receive from all of its active neighboring nodes periodically forever. The non-
active nodes do not participate in the protocol. We assume the choice of which are the active nodes and the
schedule of activations to be adversarial.

Theorem 6. Given a Sensor Network with n nodes, where the maximum number of nodes adjacent to any
node is k− 1 < n, Primed Selection solves the Recurring Reception problem with delay in O(kn log n) and
the message complexity per reception is k, which is optimal as shown in Theorem 4.

Proof. Consider any node u and the set of its adjacent nodes N(u). If u receives the transmissions of all
its neighbors without collisions we are done. Otherwise, consider a pair of nodes i, j ∈ N(u) that transmit
–hence, collide at u– at time tc. Since p(i) and p(j) are coprimes, the next collision among them at u occurs
at time tc + p(i)p(j). Since p(i)p(j) > p(i)k, j does not collide with i at u within the next kp(i) steps.
Node i transmits at least k times within this interval. There are at most k − 2 other nodes adjacent to u that
can collide with i at u, and of course u itself can collide with i at u. But, due to the same reason, they can
collide with i at u only once in the interval [tc, tc + kp(i)]. Therefore, i transmits without collision at u at
least once within this interval and the claimed delay follows. The transmission of every node is received by
some neighboring node at least once every k transmissions.
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Recurring Transmission. Observe that Primed Selection solves the Recurring Transmission problem also,
modulo an additional factor of 7 in the analysis, because any two-hop neighborhood has at most 7k nodes,
by a simple geometric argument based on the optimality of an hexagonal packing [14].

2.3 Delay Lower Bounds

De Bonis, Ga̧sieniec and Vaccaro have shown [2] a lower bound of ((k − m + 1)b(m − 1)/(k − m +
1)c2/(4 log(b(m − 1)/(k − m + 1)c) + O(1))) log(n/(k − m + 1)) on the size of (k, m, n)-selectors
when 1 ≤ m ≤ k ≤ n, k < 2m − 2. When m = k > 2, this lower bound gives a lower bound of
Ω(k2 log n/ log k) for the delay of any protocol that solves Recurring Selection. To see why, recall that a
(k, m, n)-selector is defined as follows

Definition 7. [2] Given integers k, m, and n, with 1 ≤ m ≤ k ≤ n, we say that a boolean matrix M with t
rows and n columns is a (k, m, n)-selector if any submatrix of M obtained by choosing k out of n arbitrary
columns of M contains at least m distinct rows of the identity matrix Ik . The integer t is the size of the
(k, m, n)-selector.

Now, assume that there exists a protocol P for Recurring Selection with delay in o(k2 log n/ log k).
Recall that a protocol for Recurring Selection is a set of schedules of transmissions. Assuming that all nodes
start simultaneously, consider such a set of schedules. By definition of Recurring Selection, for each choice
of k schedules of P , i.e., active nodes, there exists a positive integer t ∈ o(k2 log n/ log k) such that in every
time interval of length t each active node must achieve at least one non-colliding transmission.

If we represent a transmission with a 1 and a reception with a 0, the set of schedules can be mapped
to a matrix M where each time step is a row of M and each schedule is a column of M . The arbitrary
choice of the set of k active nodes is equivalent to choose k arbitrary columns of M . The time steps where
each of the k active nodes achieve non-colliding transmissions gives the m = k distinct rows of the identity
matrix Ik in M . Therefore, there exists a (k, k, n)-selector of size in o(k2 log n/ log k) which violates the
aforementioned lower bound.

Thus, Ω(k2 log n/ log k) is a lower bound for the delay of any protocol that solves Recurring Selection
and, using the same argument as in Section 2.1, a lower bound for Recurring Selection is also a lower bound
for Recurring Reception and Recurring Transmission.

It is important to notice that our main goal is to minimize the message complexity. Hence, this lower
bound might be improved if we maintain the constraint of a message complexity of at most k. Nevertheless,
in order to obtain a better lower bound, we will use the memory size constraint present in the Weak Sensor
Model (and any Radio Network for that matter) which leads to protocols with some form of periodicity.

We define an equiperiodic protocol as a set of schedules of transmissions where, in each schedule, every
two consecutive transmissions are separated by the same number of time slots. A simple lower bound of
Ω(kn) steps for the delay of any equiperiodic protocol that solves Recurring Selection can be observed as
follows. n different periods are necessary otherwise two nodes can collide forever. At least k transmissions
are necessary within the delay to achieve one reception successfully as proved in Theorem 4. Therefore,
there exist a node with delay at least kn, which we formalize in the following theorem.

Theorem 8. Any oblivious equiperiodic protocol that solves Recurring Selection in a one-hop Radio Net-
work with n nodes, where k of them are activated possibly at different times, has delay at least kn.
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2.4 A Delay-Optimal Equiperiodic Protocol for k ≤ n1/6 log log n

In Primed Selection, the period of each node is a different prime number. However, in order to achieve
optimal message complexity as proved in Theorem 4, it is enough to use a set of n periods that verify the
following property. For each pair of distinct periods u, v it holds that v/ gcd(u, v) ≥ k and u/ gcd(u, v) ≥
k. In this section, we define a set of periods that verifies this property and, when used as periods in Primed
Selection, gives optimal delay for equiperiodic protocols when k ≤ n1/6 log log n.

The idea is to use a set of composite numbers each of them formed by log log n prime factors taken
from the smallest log n primes bigger than k. More precisely, we define a compact set C as follows. Let p`

denote the `-th prime number. Let pµ be a prime number such that pµ = 2 if k ≤ 2, and pµ−1 < k ≤ pµ

otherwise. Let P be the set of prime numbers P = {pµ, pµ+1, . . . , pµ+log n−1}. Let F be a family of
sets such that F = {F |(F ⊂ P ) ∧ (|F | = log log n)}. Make C a set of composite numbers such that
C = {cF |cF = (

∏
i∈F i) ∧ (F ∈ F)}. The following lemma shows that the aforementioned property holds

in a compact set.

Lemma 9. Given a positive integer k ≤ n and a compact set C defined as above, for all pairs u, v ∈ C, u 6=
v it holds that v/ gcd(u, v) ≥ k and u/ gcd(u, v) ≥ k.

Proof. For the sake of contradiction, assume that there exists a pair u, v ∈ C, u 6= v such that either
v/ gcd(u, v) < k or u/ gcd(u, v) < k. Let U = {u1, u2, . . . , ulog log n} and V = {v1, v2, . . . , vlog log n}
be the sets of prime factors of u and v respectively. Given that the prime factorization of a number is
unique and that |U | = |V |, there must exist ui ∈ U and vj ∈ V such that ui /∈ V and vj /∈ U . But then
u/ gcd(u, v) ≥ ui ≥ k and v/ gcd(u, v) ≥ vi ≥ k which is a contradiction.

We assume that, for each node with ID i, a number P (i) ∈ C has been stored in advance in its memory
so that no two nodes have the same number. It can be derived that |C| =

(
log n

log log n

)
≥ n for large enough

values of n. Hence, C is big enough as to assign a different number to each node.
In order to show the delay-optimality of this assignment it remains to be proved that the biggest period

is in O(n) when k ≤ n1/6 log log n, which we do in the following lemma.

Lemma 10. Given a positive integer k ≤ n1/6 log log n and a compact set C defined as above, maxc∈C{c} ∈
O(n).

Proof. Consider the prime number pk+log n. Using the prime number theorem, it can be shown that the
number of primes in the interval [k, pk+log n] is bigger than log n. Hence, in order to prove the claim, it is
enough to prove (pk+log n)log log n ∈ O(n). Thus, using the prime number theorem, for some constants α, β
we want to prove

(β(k + log n) log(k + log n))log log n ≤ αn.

Replacing k ≤ n1/6 log log n, the inequality is true for large enough values of n.

Now we are in conditions to state the main theorem for Recurring Selection which can be proved with a
combination of the preceeding lemmas and Theorems 4 and 8. As before, this theorem can be extended to
Recurring Reception and Recurring Transmission.

Theorem 11. Given a one-hop Radio Network with n nodes, where k ≤ n1/6 log log n nodes are activated
perhaps at different times, Primed Selection using a compact set of periods solves the Recurring Selection
problem with optimal message complexity k and delay in O(kn) which is optimal for equiperiodic protocols.

The good news is that this value of k is actually very big for most of the applications of Sensor Networks,
where a logarithmic density of nodes in any one-hop neighborhood is usually assumed.
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3 Adaptive Protocols

3.1 Reducing the Delay using Primed Selection

The same technique used in Primed Selection yields a reduced delay if we use only O(k) coprime periods in
the whole network as long as we guarantee that, for every node u, every pair of nodes i, j ∈ N(u)∪{u} use
different coprimes. However, given that the topology is unknown, it is not possible to define an oblivious
assignment that works under our adversary.

In this section, we show how to reduce the delay introducing a pre-processing phase in which nodes
self-assign those primes appropriately. Given that in this protocol it is necessary to maintain two sets of
k primes, we relax the Weak Sensor Model assuming that the memory size of each node is bounded only
by O(k + log n) bits. We further assume that nodes are deployed densely enough so that if we reduce the
radius of transmission by a constant factor the network is still connected. This assumption introduces only
an additional constant factor in the total number of nodes to be deployed n and the maximum degree k − 1.

We first give the intuition of the protocol. As before, we use prime numbers bigger than k but, addition-
ally, the smallest k of them are left available. More precisely, each node with ID i ∈ 1, . . . , n is assigned a
big prime number p(i) so that p(1) = pj+k < p(2) = pj+k+1 . . . p(n) = pj+k+n−1. Where p` is the `-th
prime number and pj is the first prime number bigger than k. Again, given that k ≤ n, the size in bits of the
biggest prime is still in O(log n).

Using their big prime as a period of transmission nodes first compete for one of the k small primes left
available. Once a node chooses one of these small primes, it announces its choice with period its big prime
and transmits its messages with period its small prime. If at a given time slot these transmissions coincide,
it is equivalent to the event of a collision of the transmissions of two different nodes, hence, we do nothing.

In order to prevent two nodes from choosing the same small prime, each node maintains a counter. A
node chooses an available small prime upon reaching a final count. When a node reaches its final count and
chooses, it is guaranteed that all neighboring nodes lag behind enough so that they receive the announcement
of its choice before they can themselves choose a small prime.

In order to ensure the correctness of the algorithm, no two nodes within two hops should choose the
same small prime. Therefore, we use a radius of transmission of r/2 for message communication and r for
small-prime announcements.

The protocol is detailed in Algorithm 1. It was shown before that the delay of Primed Selection is in
O(kn log n). For clarity of the presentation, we denote this value as T .

Let us call a node that has chosen a small prime a decided node and undecided otherwise. In order to
prove the correctnes of Algorithm 1, we have to prove that every node becomes decided and that no pair of
neighboring nodes choose the same prime.

Lemma 12. Given any node u that becomes decided in the time slot t, the counter of every undecided node
v ∈ N(u) is at most T in the time slot t.

Proof. Consider a node u that becomes decided at time t. For the sake of contradiction, assume that there
is an undecided node v ∈ N(u) whose counter is greater than T at t. By the definition of the algorithm, v
did not receive a bigger counter for more than T steps before t and u did not receive a bigger counter for 2T
steps before t. In the interval [t− T, t] the local counter of u is larger than the local counter of v. As shown
in Theorem 6, v must receive from u within T steps. Then, v must have been reset in the interval [t− T, t],
which is a contradiction.
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Algorithm 1: Primed Selection with pre-processing.

for each node with assigned prime number p(i) do1

initialize a used-small-primes set to empty;2

initialize local counter to 0;3

while counter < 2T do4

if a bigger counter is received then5

reset local counter to 0;6

if a small prime is received then7

update the local used-small-primes set;8

transmit counter with period p(i) and radius r;9

increase counter;10

end11

choose an available small prime pj ;12

while true do13

transmit pj with period p(i) and radius r;14

transmit the message with period pj and radius r/2;15

if in a time step these transmissions coincide then16

do not transmit;17

end18

end19

Theorem 13. Given a Sensor Network with n nodes, where the maximum degree is k− 1 < n, if nodes run
Algorithm 1, no pair of neighboring nodes choose the same small prime and every node becomes decided
within O(Tn2) steps after starting running the algorithm.

Proof. The first statement is a direct conclusion of Lemma 12 and Theorem 6. For the second statement, if
a node u is not reset within T steps no neighbor of u has a bigger counter and u will become decided within
2T steps. Thus, it takes at most (n + 1)T steps for the first node in the network that becomes decided. By
definition of the algorithm, after a node becomes decided, it does not reset the counter of any other node.
Applying the same argument recursively the claim follows.

Theorem 14. Given a Sensor Network with n nodes, where the maximum degree is k − 1 < n, after the
pre-processing, the delay of Algorithm 1 is O(k2 log k) and the message complexity is k.

Proof. As in Theorem 6.
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