
Algorithmica
DOI 10.1007/s00453-008-9190-2

A Timing Assumption and Two t-Resilient Protocols
for Implementing an Eventual Leader Service
in Asynchronous Shared Memory Systems

Antonio Fernández · Ernesto Jiménez ·
Michel Raynal · Gilles Trédan

Received: 22 May 2007 / Accepted: 26 March 2008
© Springer Science+Business Media, LLC 2008

Abstract This paper considers the problem of electing an eventual leader in an asyn-
chronous shared memory system. While this problem has received a lot of attention
in message-passing systems, very few solutions have been proposed for shared mem-
ory systems. As an eventual leader cannot be elected in a pure asynchronous system
prone to process crashes, the paper first proposes to enrich the asynchronous system
model with an additional assumption. That assumption (denoted AWB) is particularly
weak. It is made up of two complementary parts. More precisely, it requires that, after
some time, (1) there is a process whose write accesses to some shared variables be
timely, and (2) the timers of (t − f ) other processes be asymptotically well-behaved
(t denotes the maximal number of processes that may crash, and f the actual num-
ber of process crashes in a run). The asymptotically well-behaved timer notion is a
new notion that generalizes and weakens the traditional notion of timers whose dura-
tions are required to monotonically increase when the values they are set to increase
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(a timer works incorrectly when it expires at arbitrary times, i.e., independently of
the value it has been set to).

The paper then focuses on the design of t-resilient AWB-based eventual leader pro-
tocols. “t-resilient” means that each protocol can cope with up to t process crashes
(taking t = n − 1 provides wait-free protocols, i.e., protocols that can cope with any
number of process failures). Two protocols are presented. The first enjoys the fol-
lowing noteworthy properties: after some time only the elected leader has to write
the shared memory, and all but one shared variables have a bounded domain, be
the execution finite or infinite. This protocol is consequently optimal with respect to
the number of processes that have to write the shared memory. The second protocol
guarantees that all the shared variables have a bounded domain. This is obtained at
the following additional price: t +1 processes are required to forever write the shared
memory. A theorem is proved which states that this price has to be paid by any pro-
tocol that elects an eventual leader in a bounded shared memory model. This second
protocol is consequently optimal with respect to the number of processes that have
to write in such a constrained memory model. In a very interesting way, these proto-
cols show an inherent tradeoff relating the number of processes that have to write the
shared memory and the bounded/unbounded attribute of that memory.

Keywords Asynchronous system · Atomic register · Eventual leader ·
Fault-tolerance · Omega · Process crash · Shared memory · System model · Timer
property · Timing assumptions · t-resilient protocol

1 Introduction

Context and Motivation In order to be able to cope with process failures, many
upper layer services (such as atomic broadcast, atomic commitment, group member-
ship, etc.) rely in one form or another on an underlying basic service called eventual
leader facility. Such a service provides the processes with a single operation, denoted
leader(), such that each invocation of that operation returns a process name, and, after
some unknown but finite time, all the invocations returns the same name, and this is
the name of an alive process. One of the most famous protocol based on such an even-
tual leader service is the well-known state machine replication protocol called Paxos
[19]. An eventual leader service (also called unreliable failure detector or distributed
oracle [5, 30]) is usually denoted Ω in the literature [6].

Building an eventual leader service requires the processes to cooperate in order
to elect one of them. It has been shown that such an election is impossible when the
progress of each process is totally independent of the progress of the other processes,
namely when the processes are fully asynchronous (direct proofs of this impossibility
can be found in [3, 27]). Of course, considering a synchronous system would allow
designing an eventual leader service, but this is not sensible as this is a very strong
assumption on the system behavior. So, a central issue consists in finding timing as-
sumptions that are, at the same time, “strong enough” in order a leader service can
be built, and “weak enough” in order that they are “practically” meaningful (i.e., they
are satisfied nearly always [29]). Finding such necessary and sufficient assumptions
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remains a fundamental issue from both a practical and theoretical points of view.
Seen from a theory point of view, the answer would establish the asynchrony bound-
ary beyond which the problem cannot be solved. Seen from a practical point of view,
the answer would define the requirements a system has to satisfy in order to solve the
problem, and would consequently provide the engineers with the minimal require-
ments their underlying systems have to meet.

Some distributed systems are made up of computers that communicate through
a network of attached disks. These disks constitute a storage area network (SAN)
that implements a shared memory abstraction. As commodity disks are cheaper than
computers, such architectures are becoming more and more attractive for achieving
fault-tolerance [1, 4, 10, 21]. The Ω protocols presented in this paper are suited to
such systems. Examples of shared memory Ω-based protocols can be found in [9,
14].

On another side, multi-core architectures are becoming more and more deployed
and create a renewed interest for asynchronous shared memory systems. In such a
context, it has been shown [11] that Ω constitutes the weakest contention manager
that allows transforming any obstruction-free [16] software transactional memory
into a non-blocking transactional memory [17]. This constitutes a very strong moti-
vation to look for requirements that, while being “as weak as possible”, are strong
enough to allow implementing Ω in asynchronous shared memory environments
prone to process failures.

Content of the Paper This paper is on the design of protocols that construct an even-
tual leader service Ω in an asynchronous shared memory system where processes can
crash. Let n be the total number of processes, and t the maximal number of processes
that can crash in a run. We are interested in the design of t-resilient protocols, i.e.,
protocols that can cope with up to t process crashes. This means that the protocol
has to work correctly when no more than t processes are faulty. When, more than t

processes are faulty, the protocol is allowed to behave arbitrarily. When, t = n − 1,
a t-resilient protocol is also called a wait-free protocol [15]. Usually, the system pa-
rameter t is explicitly used in the text of a t-resilient protocol. As, in practice, the
number of processes that crash in a given run is very small, it is interesting to design
t-resilient protocols. Let f , 0 ≤ f ≤ t , denote the number of processes that crash in
a given run. The paper has three main contributions.

Contribution #1 The paper first proposes a behavioral assumption for the asynchro-
nous system be able to implement an eventual leader, that is particularly weak. It is
made up of two matching parts. In each run, there are a finite (but unknown) time τ ,
and a process p that does not crash in that run (p is not a priori known) such that,
after τ :

• If f < t , there is a bound Δ (not necessarily known) such that any two consecutive
write accesses to some shared variables issued by p, are separated by at most Δ

time units, and
• There are (t − f ) correct processes q , q �= p, that have a timer that is asymptot-

ically well-behaved. Intuitively, this notion expresses the fact that eventually the
duration that elapses before a timer expires has to increase when the timeout para-
meter increases.
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It is important to see that the timers of n − (t − f ) correct processes can behave
arbitrarily, i.e., they can expire at times that are arbitrary with respect to the values
they have been set to. Moreover, the timers of the (t − f ) correct processes involved
in the additional assumption can behave arbitrarily during arbitrarily long (but finite)
periods. Moreover, as we will see in their formal definition, their durations are not re-
quired to monotonically increase when their timeout values increase. They only have,
after some time, to be lower-bounded by some monotonically increasing function.

It is worth noticing that no process (but p) is required to have a synchronous be-
havior, and only some timers have to eventually satisfy a weak behavioral property.
Moreover, it is easy to see that, in the runs where f = t , the previous assumption is
always trivially satisfied despite asynchrony (no process is required to behave syn-
chronously, and no timer is required to behave correctly).

Contribution #2 The paper then presents two t-resilient protocols that construct an
eventual leader service Ω in all the runs that satisfy the previous behavioral assump-
tions. Both protocols use one-writer/multi-readers (1WMR) atomic registers.

• In the first protocol, all the shared registers (but one) have a bounded domain. More
specifically, this means that, be the run finite or infinite, there is a time after which
only one shared register keeps on increasing. Interestingly, all the timeout values
stop increasing.

Moreover, there is a single process that writes forever the shared memory. The
protocol is consequently write-optimal, as at least one process has to write the
shared memory to inform the other processes that the current leader is still alive.

• The second t-resilient protocol improves the first one in the sense that all the shared
registers used by the processes to communicate are bounded. This nice property is
obtained by using two boolean flags and a simple hand-shaking mechanism be-
tween each pair of processes. For each ordered pair of processes (p, q), these flags
allow, in one direction, p to pass an information to q , and in other direction, q to
inform p that it has read that information.

Interestingly, the design of both protocols is based on simple ideas. Moreover, these
protocols are presented in an incremental way: the second t-resilient protocol is de-
signed as a simple improvement of the first one. This makes easier both its under-
standing and its proof.

Contribution #3 The paper proves lower bound results for the considered comput-
ing model. These results concern the minimal number of processes that have to write
the shared memory when that memory is not bounded and when it is bounded, and
the minimal number of processes that have to read the shared memory.

More precisely, three theorems are stated and proved. The first shows that the
process that is eventually elected has to forever write the shared memory. Another
theorem shows that any process (but the eventual leader) has to forever read the shared
memory. Finally, the last theorem shows that, if the shared memory is bounded, then
t + 1 processes have to forever write the shared memory. These theorems show that
the two t-resilient protocols presented in the paper are optimal with respect to these
criteria.
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Related Work in the Message-Passing Context The design of protocols that imple-
ment an eventual leader service has received a lot of attention in the message-passing
context, i.e., when the processes cooperate by exchanging messages through an un-
derlying network. The implementation of Ω in asynchronous message-passing sys-
tems is an active research area. Two main approaches have been investigated: the
timer-based approach and the message pattern-based approach.

The timer-based approach relies on the addition of timing assumptions [7]. Basi-
cally, it assumes that there are bounds on process speeds and message transfer de-
lays, but these bounds are not known and hold only after some finite but unknown
time. The protocols implementing Ω in such “augmented” asynchronous systems are
based on timeouts (e.g., [2, 3, 20]). They use successive approximations to eventually
provide each process with an upper bound on transfer delays and processing speed.
They differ mainly on the “quantity” of additional synchrony they consider, and on
the message cost they require after a leader has been elected.

Among the protocols based on this approach, a protocol presented in [2] is partic-
ularly attractive, as it considers a relatively weak additional synchrony requirement.
Let t be an upper bound on the number of processes that may crash (1 ≤ t < n, where
n is the total number of processes). This assumption is the following: the underlying
asynchronous system, which can have fair lossy channels, is required to have a cor-
rect process p that is a ♦t-source. This means that p has t output channels that are
eventually timely: there is a time after which the transfer delays of all the messages
sent on such a channel are bounded (let us notice that this is trivially satisfied if the
receiver has crashed). Notice that such a ♦t-source is not known in advance and may
never be explicitly known. It is also shown in [2] that there is no leader protocol if
the system has only ♦(t − 1)-sources. A versatile adaptive timer-based approach has
been developed in [23].

The message pattern-based approach, introduced in [25], does not assume eventual
bounds on process and communication delays. It considers that there is a correct
process p and a set Q of t processes (with p /∈ Q, moreover Q can contain crashed
processes) such that, each time a process q ∈ Q broadcasts a query, it receives a
response from p among the first (n − t) corresponding responses (such a response
is called a winning response). It is easy to see that this assumption does not prevent
message delays to always increase without bound. Hence, it is incomparable with
the synchrony-related ♦t-source assumption. This approach has been applied to the
construction of an Ω protocol in [27].

A hybrid protocol that combines both types of assumption is developed in [28].
More precisely, this protocol considers that each channel eventually is timely or satis-
fies the message pattern, without knowing in advance which assumption it will satisfy
during a particular run. The aim of this approach is to increase the assumption cover-
age, thereby improving fault-tolerance [29].

Related Work in the Shared Memory Context To our knowledge, only three eventual
leader protocols suited to the shared memory context have been proposed so far [8,
13]. The protocol presented in [13] assumes that there is a finite time after which all
the processes behave synchronously. So, this timing assumption is pretty strong.

The second paper [8] investigates an assumption that is at the origin of the as-
sumption presented in this paper. The algorithms in [8] actually present our early
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work on the election of an eventual leader in an asynchronous shared memory sys-
tem. That preliminary work considered only the case t = n− 1 (namely, the wait-free
case), and presents two wait-free algorithms (without their proofs). As in this paper,
one of these algorithms considers that all but one variables are bounded, while the
other algorithm addresses the case where all the variables are bounded. Both these
algorithms are different from their counterparts presented here: they are less general
(they are not t-resilient), use more shared variables and are less efficient.1 Moreover,
the assumption used here is slightly weaker and more general than the one introduced
in [8]. It is also important to notice that the t-resilient algorithms presented here are
original, and do not result from a “simple generalization” of the algorithms presented
in [8]. Not only they use less shared variables (as already mentioned), but their design
is based on different principles. Finally, when considering t = n − 1, these t-resilient
algorithms are more efficient than their wait-free counterparts presented in [8].

Roadmap The paper is made up of 5 sections. Section 2 presents the system model
and the additional behavioral assumption. Then, Sects. 3 and 4 present in an incre-
mental way the two t-resilient protocols implementing an eventual leader service,
and show they are optimal with respect to the number of processes that have to write
or read the shared memory. Finally, Sect. 5 provides concluding remarks.

2 System Model, Eventual Leader, and Additional Assumption

2.1 Base Asynchronous Shared Memory Model

The system consists of n (n > 1) processes denoted p1, . . . , pn. We assume that
process identities are all different and totally ordered. Hence, for simplicity we make
the integer i to denote the identity of pi . A process can fail by crashing, i.e., prema-
turely halting. Until it possibly crashes, a process behaves according to its specifica-
tion, namely, it executes a sequence of steps as defined by its protocol. After it has
crashed, a process executes no more steps. By definition, a process is faulty during a
run if it crashes during that run; otherwise it is correct in that run. In the following,
t denotes the maximum number of processes that are allowed to crash in any run
(1 ≤ t ≤ n − 1),2 while f denotes the actual number of processes that crash in a run
(0 ≤ f ≤ t).

The processes communicate by reading and writing a memory made up of
atomic registers (also called shared variables). Each register is one-writer/multi-
reader (1WMR). “1WMR” means that a single process can write into it, but all the

1As an example, the task T 3 in these algorithms (see Figs. 2 and 4) considers only the value k, where pk

is the current leader, while all the values k �= i have to be considered in the algorithms presented in [8].
2This means that, if more than t processes crash in a run, we are outside the system model, and a protocol
can then behave arbitrarily. If we want the protocol to cope with any number of process crashes we have
to take t = n − 1. Let nevertheless observe that, in practice, failures are rare, so small values of t (with
respect to n) are realistic.
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processes can read it. (Let us observe that using 1WMR atomic registers is particu-
larly suited for cache-based distributed shared memory.3) The only process allowed
to write an atomic register is called its owner. Atomic means that, although read and
write operations can take time and overlap, everything appears as (1) if the read and
write operations are executed one after the other, (2) each operation appearing as if
it has been executed instantaneously at some point of the time line between its invo-
cation and return events (this is called the linearization point of the operation [18]).
Atomicity is a very powerful conceptual tool that allows us to think and reason as if
the operations are totally ordered and take no time to execute.

Uppercase letters are used for the identifiers of the shared registers. These regis-
ters are structured into arrays. As an example, PROGRESS[i] denotes a shared reg-
ister that can be written only by pi , and read by any process. A process can have
local variables. Those are denoted with lowercase letters, with the process identity
appearing as a subscript. As an example, progressi denotes a local variable of pi .

In the following we consider that some shared registers are critical, while the
other shared registers are not critical. A critical register is a register whose accesses
by some processes have to satisfy some timing constraints (see Sect. 3.2).4

This base model is characterized by the fact that there is no assumption on the exe-
cution speed of one process with respect to another. This is the classical asynchronous
shared memory model where up to t processes may crash. It is denoted ASn,t [∅] in
the following.

2.2 Eventual Leader Service

The notion of eventual leader service has been informally presented in the introduc-
tion. It is an entity that provides each process with a primitive leader() that returns a
process identity each time it is invoked. A unique correct leader is eventually elected
but there is no knowledge of when the leader is elected. Several leaders can coexist
during an arbitrarily long period of time, and there is no way for the processes to
learn when this “anarchy” period is over. The leader service, denoted Ω , satisfies the
following properties [6]. (The second property refers to a notion of global time. It is
important to notice that this global time is only for a specification purpose. It is not
accessible to the processes.)

• Validity: The value returned by a leader() invocation is a process identity.
• Eventual Leadership: There is a finite time and a correct process pi such that, after

that time, every leader() invocation returns i.
• Termination: Any leader() invocation issued by a correct process terminates.

3As observed in the Introduction the atomic registers can also be seen as a high level abstraction of a
communication system made up of commodity disks. Such disks can be accessed only by read and write
operations. Such “shared memory” systems are described in [10, 21]. Protocols based of commodity disks
are described in [9, 14].
4The notion of critical register is not necessary to implement an eventual leader. All shared registers could
implicitly be considered as being critical. The critical attribute is used only to restrict the set of registers
involved in the additional assumptions required to elect an eventual leader.
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The Ω leader abstraction has been formally introduced in [6]. It has been shown
to be weakest, in terms of information about failures, to solve consensus in asynchro-
nous systems prone to process crashes, be these systems message-passing systems
[6] or shared memory systems [22]. Several consensus protocols based on such an
eventual leader service have been proposed (e.g., [12, 19, 26] for message-passing
systems, and [9, 14] for shared memory systems).

2.3 Additional Behavioral Assumption

Underlying Intuition As already indicated, Ω cannot be implemented in pure
asynchronous systems such as ASn,t [∅]. So, we consider the system is no longer
fully asynchronous: its runs satisfy the following assumption denoted AWB (for
asymptotically well-behaved). The resulting system is consequently denoted
ASn,t [AWB].

Each process pi is equipped with a timer denoted timeri . The intuition that under-
lies AWB is that, once a process p� that has not crashed is defined as being the current
leader, it should not to be demoted by a process pi that believes p� has crashed. To
that end, constraints have to be defined on the behavior of both p� and pi . The con-
straint on p� is to force it to “regularly” inform the other processes that it is still alive.
The constraint on a process pi is to prevent it to falsely suspect that p� has crashed.

There are several ways to define runs satisfying the previous constraints. As an
example, restricting the runs to be “eventually synchronous” [5, 7] would work but
is much more constraining than what is necessary. The aim of the AWB additional
assumption is to state constraints that allow implementing Ω while being “as weak
as possible”. “As weak as possible” is an intuitive notion, different from the “weakest
possible” formal notion. It means that, when one wants to implement Ω in a shared
memory system, as far as we are concerned, we know neither an assumption weaker
than AWB, nor the answer to the question: “Is AWB the weakest additional assump-
tion?”. It appears that requiring the timers to be eventually monotonous is stronger
than necessary (as we are about to see, this is a particular case of the AWB assump-
tion).

The AWB assumption is made up of two parts AWB1 and AWB2 that we present
now. AWB1 and AWB2 are “matching” properties. AWB1 is on the existence of a
process whose behavior has to satisfy a synchrony property. AWB2 is on the timers
of a subset of the other processes; it states a property that allows these processes to
perceive the progress of the process involved in AWB1.

The Assumption AWB1 That assumption restricts the asynchronous behavior of one
process. Given a run characterized by a value of f , it is defined as follows.

AWB1: If f < t , there are a time τAWB1 , a bound Δ, and a correct process p�

(τAWB1 , Δ and � may never be explicitly known) such that, after τAWB1 , any
two consecutive write accesses issued by p� to (its own) critical registers, are
completed in at most Δ time units.

Let us first observe that this assumption is always satisfied when f = t . When
f < t , it means that, after some arbitrary (but finite) time, the speed of p� is lower-
bounded, i.e., its behavior is partially synchronous (let us notice that, while there is a
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lower bound, no upper bound is required on the speed of p�, except the fact that it is
not +∞). In the following we say “p� satisfies AWB1” to say that p� is a process that
makes true that assumption.

The Assumption AWB2 The definition of AWB2 involves timers and relies on the
notion of asymptotically well-behaved timer. The aim of that notion is to capture
timer behaviors that are sufficient to implement an eventual leader but could be too
weak to solve other problems. From an operational point of view, the intuition that
underlies that notion is that there is a time τ after which, whatever the duration δ and
the time τ ′ ≥ τ at which it is set to δ, that timer expires after some finite time τ ′′ such
that τ ′′ ≥ τ ′ + δ. That is the only constraint on the timer expiration for that timer to
be asymptotically well-behaved. If the timer is set to δ1 at some time τ1 ≥ τ and
expires at τ1′, and the same or another timer is set to δ2 > δ1 at some time τ2 ≥ τ

and expires at τ2′, it is not required that τ2′ − τ2 > τ1′ − τ1.
In order to formally define the notion of asymptotically well-behaved timer, we

first introduce a function f : R+ × R+ → R+, with monotonicity properties that
will be used to define an asymptotic behavior. That function takes two parameters, a
time τ and a duration x, and returns a duration. Its monotonicity properties are the
following. There are two (possibly unknown) bounded values xAWB2 and τAWB2 such
that:

(f1) ∀τ2, τ1 : τ2 ≥ τ1 ≥ τAWB2 , ∀x2, x1 : x2 ≥ x1 ≥ xAWB2 : f (τ2, x2) ≥ f (τ1, x1). (Af-
ter some point, f () is not decreasing with respect to τ and x).

(f2) limx→+∞ f (τAWB2 , x) = +∞. (Eventually, f () always increases.5)

Thanks to the function f (), we are now in order to give a general and precise
definition for the notion of asymptotically well-behaved timer. Considering the timer
timeri of a process pi and a run R, let τ be a real time at which the timer is set to
a value x, and τ ′ be the finite real time at which that timer expires. Let TR(τ, x) =
τ ′ − τ , for each x and τ . Then timer timeri is asymptotically well-behaved in the run
R, if there is a function fR(), as defined above, such that:

(f3) ∀τ : τ ≥ τAWB2 , ∀x : x ≥ xAWB2 : fR(τ, x) ≤ TR(τ, x).

This constraint states the fact that, after some point, the function TR() is always
above the function fR(). It is important to observe that, after (τAWB2, xAWB2), the
function TR(τ, x) is not required to be non-decreasing, it can increase and decrease.
Its only requirement is to always dominate fR(). (See Fig. 1.) As we can see, the
notion of “asymptotically well-behaved” limits the inaccuracy of a timer, it does not
require it to be “perfect” (i.e., to expire exactly when the duration it has been set to
has elapsed).

Practically, the property (f3) means that an asymptotically well-behaved timer is
allowed to expire at arbitrary times (i.e., times that are unrelated to the timeout values
it has been set to) during an arbitrary but finite time, after which it behaves correctly in

5If the image of f () is the set of natural numbers, then this condition can be replaced by x2 > x1 ⇒
f (τAWB2 , x2) > f (τAWB2 , x1).
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Fig. 1 TR() asymptotically dominates fR()

the sense that it never expires “too early” (without being required to behave monoton-
ically according to the durations is it set to). Moreover, there is no upper bound on
the duration after which it expires, except that this duration is finite.

To motivate and illustrate the previous discussion, let us consider the case of a
system with computers whose local clocks suffer drifts, and are periodically resyn-
chronized (e.g., by means of the Network Time Protocol (NTP) [24]). In such a sys-
tem, it can happen that the timer of a processor pi is set to a duration x before the
resynchronization of pi ’s local clock, and timeouts after that resynchronization. In
that case, the timer can expire at a time that is not correctly related to x. More gener-
ally, for the same duration x, setting a timer at a time τ can lead to a larger sleeping
time (for the timer) than setting the timer at a time τ ′, τ ′ > τ , with the same x. This
in fact can occur for infinite triples x, τ , and τ ′. Hence, the associated function TR()

is not monotonically increasing. But, TR(τ, x) can be lower-bounded by a function
fR(τ, x), which satisfies the properties (f1), (f2), and (f3) defined above (the defini-
tion of fR(τ, x) has then to take into account the maximal drifts of the local clocks).

A timer that does not asymptotically well-behave can be seen as a kind of Byzan-
tine timer (i.e., a timer that, whatever the duration it has been set to, expires at arbi-
trary times). Such a bad behavior can be due, for example, to erratic clock drifts and
resynchronizations (as analyzed before) or to cosmic rays that modify bits of a time-
out value. The notion of “asymptotically well-behaved” shows that a timer has not
to be “perfect” in order to be useful when implementing an eventual leader. It is not
required to behave monotonically (with respect to the durations it is set to) as long as
its behavior is lower-bounded by a function f () satisfying the properties previously
stated. We are now in order to state the assumption AWB2. It is the following.

AWB2: The timers of (t − f ) correct processes (different from the process p�

that satisfies AWB1) are asymptotically well-behaved.
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When we consider AWB, it is important to notice that any process (but p�, which
is constrained by a speed lower bound) can behave in a fully asynchronous way.
Moreover, the local clocks used to implement the timers are required to be neither
synchronized, nor accurate with respect to real-time. Moreover, the timers of up to
(n − t) + f correct processes can behave arbitrarily. This means that, in the runs
where f = t , the timers can behave arbitrarily. It follows that the timing assumption
AWB is particularly weak.

In the following we say “px is involved in AWB2” to say that px is a correct process
that has an asymptotically well-behaved timer.

3 A Write-Optimal t-Resilient Protocol for ASn,t [AWB]
3.1 Principle of the Protocol

The first t-resilient protocol that implements an eventual leader in ASn,t [AWB] is
described in Fig. 2. It is based on a simple idea: a process pi elects the process that is
the least suspected to have crashed (that idea is used in a lot of eventual leader elec-
tion protocols in message-passing systems). So, each time a process pi suspects its
current leader pj because it has not observed a progress from pj during some dura-
tion (defined by the latest timeout value used to set its timer), it increases a suspicion
counter (denoted SUSPICIONS[i, j]).

It is possible that, because its timer does not behave correctly, a process pi suspects
erroneously a process pk , despite the fact that pk did some progress (this progress
being made visible thanks to assumption AWB1 if pk satisfies that assumption). So,
when it has to determine its current leader, pi does not consider the whole set of sus-
picions (the array SUSPICIONS[1..n,1..n]), but only an appropriate part of it. More
precisely, for each process pk , pi takes into account only the (t + 1) entries with the
smallest values among the n counters SUSPICIONS[1, k], . . . ,SUSPICIONS[n, k].
As we will see, due AWB2, this allows it to eliminate the erroneous suspicions and
consequently determine a correct eventual common leader.

As several processes can be equally suspected, pi uses the function lex_min(X)

that outputs the lexicographically smallest pair in the set parameter X, where X is
a set of (number of suspicions, process identity) pairs and (a, i) < (b, j) iff (a <

b) ∨ (a = b ∧ i < j).

3.2 Shared and Local Variables

Shared Variables The shared memory is made up of a size n vector plus a n × n

matrix of 1WMR shared atomic registers.

• PROGRESS[1..n] is an array of 1WMR shared integer variables. Only pi can write
PROGRESS[i]. In order to indicate to the other processes that it is still alive, pi

regularly increases PROGRESS[i] when it considers it is the leader.
• SUSPICIONS[1..n,1..n] is an array of shared variables that contain non-negative

integers. The entries of the vector SUSPICIONS[i,1..n] can be written only by
pi . Intuitively, SUSPICIONS[i, j ] = x means that, up to now, the process pi has
suspected x − 1 times the process pj to have crashed.
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task T 1:
(1) when leader() is invoked:
(2) for_each k ∈ {1, ..., n} do
(3) let witnessi [k] = set of (t + 1) process identities such that

∀x ∈ witnessi [k], ∀y /∈ witnessi [k]: (SUSPICIONS[x, k], x) < (SUSPICIONS[y, k], y);
(4) let suspi [k] = �x∈witnessi [k] SUSPICIONS[x, k]
(5) end_for;
(6) return(�) where � is such that (−, �) = lex_min({(suspi [k], k)}1≤k≤n)

task T 2:
(7) repeat_forever
(8) let my_witnessesi = set of (t + 1) process identities such that

∀x ∈ my_witnessesi , ∀y /∈ my_witnessesi : (SUSPICIONS[x, i], x)

< (SUSPICIONS[y, i], y);
(9) let susp_counti = �x∈my_witnessesi SUSPICIONS[x, i];
(10) if

(
(leader() = i) ∨ (susp_counti �= prev_susp_counti )

)

(11) then progressi ← progressi + 1; PROGRESS[i] ← progressi
(12) end_if;
(13) prev_susp_counti ← susp_counti
(14) end_repeat

task T 3:
(15) when timeri expires:
(16) k ← leader();
(17) let witness_ki = set of (t + 1) process identities such that

∀x ∈ witness_ki , ∀y /∈ witness_ki : (SUSPICIONS[x, k], x) < (SUSPICIONS[y, k], y);
(18) let susp_ki = �x∈witness_ki

SUSPICIONS[x, k];
(19) if

(
(k �= i) ∧ (i ∈ witness_ki ) ∧ (k = prev_ldi ) ∧ (susp_ki = prev_suspi )

)

(20) then progress_ki ← PROGRESS[k];
(21) if (progress_ki �= lasti [k])
(22) then lasti [k] ← progress_ki
(23) else suspicionsi [k] ← suspicionsi [k] + 1;
(24) SUSPICIONS[i, k] ← suspicionsi [k]
(25) end_if
(26) end_if;
(27) prev_ldi ← k; prev_suspi ← susp_ki ;
(28) timeouti ← susp_ki ; set timeri to timeouti

Fig. 2 t -resilient eventual leader election with all variables bounded, but PROGRESS[�] (code for pi )

The variables PROGRESS[k], 1 ≤ k ≤ n, are the only critical variables of
the algorithm. This means that they are the only shared variables concerned
by the additional assumption AWB1. Said differently, there is no timing con-
straint on the write accesses to the shared variables SUSPICIONS[k, �],
1 ≤ k, � ≤ n.

To achieve correctness, the initial values of the previous shared variables
could be arbitrary.6 However, to make the presentation easier, improve efficiency,

6This means that the protocol is self-stabilizing with respect to the shared variables. Whatever their initial
values, it converges in a finite number of steps towards a common leader, as soon as the additional assump-
tion is satisfied. When these variables have arbitrary initial values (that can be negative), the statement “set
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and reach optimality in some cases, we consider in the following that initially
SUSPICIONS[i, j ] = 1,1 ≤ i, j ≤ n, i �= j , and SUSPICIONS[i, i] = 0,1 ≤ i ≤ n.

Local Variables Each process pi manages the following local variables.

• progressi is used by pi to measure its progress, and consequently update
PROGRESS[i].

• lasti[1..n] is an array such that lasti[k] contains the latest value of PROGRESS[k]
read by pi .

• suspicionsi[1..n] is an array such that suspicionsi[k] contains the number of times
pi suspected pk ; suspicionsi[k] is used to update SUSPICIONS[i, k].

• timeouti contains the latest timeout value used by pi to set its timer timeri .
• susp_counti is a variable used to count the current number of meaningful suspi-

cions of pi (issued by the other processes); prev_susp_counti is used to keep the
previous value of susp_counti .

• progress_ki , witness_ki , susp_ki , prev_ldi , prev_suspi , my_witnessesi ,
witnessi[1..n], and suspi[1..n] are auxiliary local variables used by pi .

Additionally, as said above, process pi has a timer timeri which is initially set with
some arbitrary timeout value.

3.3 Process Behavior

The behavior of a process pi is described in Fig. 2. It is decomposed in three tasks.

Task T 1 The first task (lines 1–6) defines the way the current leader is determined.
For each process pk , pi first computes the number of relevant suspicions that con-
cern pk . As already mentioned, those are defined by the (t + 1) entries of the vec-
tor SUSPICIONS[1..n, k] with the smallest values (lines 3–4). The (t + 1) processes
whose entries in SUSPICIONS[1..n, k] have the smallest values are called the witness
processes for pk . The current leader is then defined as the process that is currently the
least suspected, when considering only the relevant suspicions, i.e., for each process
pk , the suspicions issued by its witness processes (line 6).

Task T 2 The second task (lines 7–14) is an infinite loop that is on the management
of the shared variable PROGRESS[i] (line 11). More explicitly, a process pi increases
PROGRESS[i] when it considers that it is the leader (test leader() = i, line 11), or
when the number of its relevant suspicions has changed since the last time it has
executed that task (test susp_counti �= prev_susp_counti , line 11; this means that pi

has been considered as a leader since its last execution of T 2). This allows pi to
inform the processes that suspected it that it is still alive.

timeri to timeouti” (line (28) of Fig. 2) has to be replaced by “set timeri to max(timeouti ,1)” in order a
timer be always set to a positive value.
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Task T 3 The third task is associated with pi ’s timer expiration. It is where pi pos-
sibly suspects the current leader and where it sets its timer (timeri ).

1. Suspicion management part (lines 16–27). First, pi determines its current leader
pk (line 16) and the current set of (t + 1) processes that suspect the least pk ; these
processes define the set witness_ki (line 17). A process pi is allowed to worry
about its current leader pk (line 19) only if (1) it does not consider itself as the cur-
rent leader (i.e., i �= k), (2) it belongs to the set of pk’s witnesses (i ∈ witness_ki ),
and, (3) at the previous timer expiration, pk was its leader (k = prev_ldi ) and,
since that time, pk has not seen an increase in its number of relevant suspicions
(susp_ki = prev_suspi ). The predicate (k = prev_ldi ) ∧ (susp_ki = prev_suspi )

allows pi to check if pk was continuously the leader between two consecutive
expirations of timeri . So, when the predicate of line 19 is satisfied, pi reads the
value of PROGRESS[k] (line 20) to see if that variable has been increased since
the latest time it read it (line 21). If it is the case, pi updates lasti[k] accordingly
(line 22). If it is not the case, pi suspects once more pk (line 24). As we can see,
in order to check if its leader pk is alive or in order to suspect it, a process pi has
to currently be one of the witness of pk . Finally, pi updates the values of prev_ldi

and prev_suspi (line 27).
2. Timer setting part (line 28). Then, pi resets its timer to an appropriate timeout

value. That value is the number of current relevant suspicions that has been com-
puted in susp_ki . Let us observe that, if the leader does not change and the number
of its relevant suspicions does no longer increase, timeouti keeps forever the same
value.

3.4 Proof of Correctness

Let us consider a run R of the protocol described in Fig. 2 in which the assumptions
AWB1 and AWB2 defined in Sect. 2.3 are satisfied. This section shows that an eventual
leader is elected in that run. The proof is decomposed into several lemmas. The first
lemma shows that faulty processes eventually stop suspecting all processes.

Lemma 1 Let pi be a faulty process. For any pj , SUSPICIONS[i, j] is bounded.

Proof Let us first observe that the vector SUSPICIONS[i,1..n] is updated only by
pi . The proof follows immediately from the fact that, after it has crashed, a process
does no longer modify shared variables. �

The following lemma shows that all processes with well-behaved timers eventu-
ally stop suspecting the “partially synchronous” process.

Lemma 2 Assuming f < t , let pi be a correct process involved in AWB2 (i.e., its
timer is eventually well-behaved), and pj a correct process that satisfies AWB1. Then,
SUSPICIONS[i, j] is bounded.

Proof The proof breaks down into two cases, depending on whether variable
PROGRESS[j ] is perpetually increased by pj . Intuitively, this lemma says that if
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pj stops increasing that variable, it is no longer leader, and consequently the other
processes will not suspect it. If, otherwise, pj increases the variable permanently, we
show that eventually pj does so at least once between two read operation from pi ,
which prevents it from suspecting pj .

Let S be the sequence of updates of PROGRESS[j ] issued by pj . Let us observe
that all these updates are issued by the task T 2 of pj (line 11). We consider two cases.

• S is finite.7

In that case, there is a finite time τ after which the predicate (leader() = j) ∨
(susp_countj �= prev_susp_countj ) evaluated by pj (line 10) is always false.
It follows from this observation and line 13 that, after τ , the local predicate
susp_countj = prev_susp_countj remains permanently true.

Assume now, by way of contradiction, that SUSPICIONS[i, j] never stops in-
creasing. Then, from the above local predicate, there is a time τ ′ after which
process pi is never among the (t + 1) witnesses of pj . (These witness processes
are defined at line 17.) Note that the condition at line 19 forces that in order to
increase SUSPICIONS[x, j] (line 24), a process px has to consider itself as one of
the (t + 1) witnesses of pj . We conclude that, after τ ′, SUSPICIONS[i, j] is never
increased.

• S is infinite.
Due to the assumption AWB1, there are a time τAWB1 , and a bound Δ such that,

after τAWB1 , any two consecutive updates of PROGRESS[j ] by pj are completed
by at most Δ time units.

By assumption AWB2, the timer of pi is asymptotically well-behaved, which
means that, for each run R, there are a function fR() and parameters τAWB2 and
xAWB2 . Let x0 ≥ xAWB2 be a finite value such that fR(τAWB2 , x0) = Δ′ > Δ. As-
sumption (f2) implies that such a value x0 does exist.

All the time instants considered in the following are after max(τAWB1, τAWB2).
Let us assume (by contradiction) that SUSPICIONS[i, j] increases forever.

1. As SUSPICIONS[i, j] increases forever (line 24), it follows that pi is a witness
of pj infinitely often (test of line 19), which means that SUSPICIONS[i, j] is in-
finitely often one of the (t + 1) smallest value in the vector SUSPICIONS[1..n,

j ]. We conclude that there is a time τ ′ after which susp_ki > x0 (lines 17
and 18). Consequently, after τ ′, any two successive expirations of timeri are
separated by at least Δ′ time units (line 28).

2. As, just before SUSPICIONS[i, j] is increased, the predicate (j = prev_ldi ) ∧
(susp_ki = prev_susp_ldi ) is true (test of line 19), it follows that, during at
least Δ′ time units, pj has been the leader without being demoted. (The
fact that pj has not been demoted follows from the following observation.
As the SUSPICIONS[x, y] variables can only increase, we can conclude from
susp_ki = prev_susp_ldi that the number of relevant suspicions of pj have not
increased and consequently pj has been continuously the leader between the
end of the first computation of susp_ki -kept in prev_susp_ldi - and the begin-
ning of the following computation of susp_ki .)

7In that case, the fact that pi satisfies AWB2 and pj satisfies AWB1, is irrelevant.
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As Δ′ > Δ, AWB1 is satisfied by pj , and we are after τAWB1 , it follows that
pj has increased its critical variable PROGRESS[j] between the any two suc-
cessive readings of that variable by pi . It follows that necessarily we then have
lasti[j ] �= PROGRESS[j], and the test of line 21 is consequently satisfied. It
follows that, after max(τAWB1, τAWB2, τ

′), the variable SUSPICIONS[i, j] can no
longer be increased, contradicting the assumption that it increases forever. This
completes the proof of the lemma. �

Notation 1 Given a process pk , let sk1(τ ) ≤ sk2(τ ) ≤ · · · ≤ skt+1(τ ) denote the
(t + 1) smallest values among the n values in the vector SUSPICIONS[1..n, k]
at time τ (i.e., these values are the number of suspicions issued by the processes
that are the witnesses of pk at time τ ). Let Mk(τ) denote sk1(τ ) + sk2(τ ) + · · · +
skt+1(τ ).

Notation 2 Let S denote the set containing the f faulty processes plus the (t − f )

correct processes involved in the assumption AWB2 (their timers are asymptotically
well-behaved). Then, for each process pk /∈ S, let Sk denote the set S ∪ {pk}. (Let us
notice that |Sk| = t + 1.)

The following lemma shows that, at any time, for any process pk not in S there is a
process in S whose number of suspicions of pk is no smaller than the largest number
of suspicions of pk’s witnesses.

Lemma 3 Let pk be a process that does not belong to S. At any time τ , there is
a process pi ∈ Sk such that the predicate SUSPICIONS[i, k] ≥ skt+1(τ ) is satis-
fied.

Proof Let K(τ) be the set of the (t + 1) processes px such that, at time τ ,
SUSPICIONS[x, k] ≤ skt+1(τ ). We consider two cases.

1. Sk = K(τ). Then, taking pi as the “last” process of Sk such that SUSPICIONS[i,
k] = skt+1(τ ) proves the lemma.

2. Sk �= K(τ). In that case, let us take pi as a process in Sk \ K(τ). As pi /∈ K(τ),
it follows from the definition of K(τ) that SUSPICIONS[i, k] ≥ skt+1(τ ), and the
lemma follows. �

Notation 3 Let Mx = max({Mx(τ)τ≥0}). If there is no such value (Mx(τ) grows
forever according to τ ), let Mx = +∞. Let B be the set of processes px such that Mx

is bounded.

In the following lemma we show that, if assumptions AWB1 and AWB2 are satis-
fied, there is at least one process that is suspected a bounded number of times (i.e.,
the set B is not empty).

Lemma 4 AWB ⇒ (B �= ∅).
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Proof The proof considers two cases, depending on whether t processes crash or not.
If t processes crash, eventually they stop suspecting all correct processes. Since any
correct process never suspects itself, at least t +1 processes stop suspecting it. Hence
all correct processes are in B . If less than t processes crash, then all processes in S

stop suspecting the process pk that satisfies AWB1. Since pk never suspects itself, at
least t + 1 processes stop suspecting it, and pk is in B .

Let us now look in detail at the two cases described above.

• Case f = t . Let us first observe that, no process pk updates SUSPICIONS[k, k].
Let us consider a time τ after which the t processes have crashed. Let pj be
any of these processes. It follows from Lemma 1 that, after τ , pj never updates
SUSPICIONS[j, k]. Consequently, for any correct process pk , there are (t + 1) en-
tries SUSPICIONS[1..n, k] that are no longer modified after τ . It follows that B is
not empty.

• Case f < t . Let pk be the process that satisfies AWB1. We show that Mk is
bounded. Due to Lemma 3, at any time τ , there is a process pj(τ) ∈ Sk such that
we have SUSPICIONS[j (τ ), k](τ ) ≥ skt+1(τ ) (where SUSPICIONS[j (τ ), k](τ )

denotes the value of the corresponding variable at time τ ). It follows that Mk(τ) is
upper bounded by (t + 1) × SUSPICIONS[j (τ ), k](τ ). So, the proof amounts to
show that, after some time, for any j ∈ Sk , SUSPICIONS[j, k] remains bounded.
Let us consider any process pj ∈ Sk after the time at which the f faulty processes
have crashed. There are three cases.

1. pj = pk . In this case SUSPICIONS[j, k] = 0 permanently.
2. pj is a faulty process of Sk . SUSPICIONS[j, k] is then bounded due to

Lemma 1.
3. pj is a process of Sk that is one of the (t − f ) correct processes involved in the

assumption AWB2. SUSPICIONS[j, k] is then bounded due to Lemma 2. �

Lemma 5 There is a time after which any invocation of the primitive leader() issued
by a process, returns the identity of a process of B .

Proof The lemma follows from the lines 2–6 and the fact that B is not empty
(Lemma 4). �

Notation 4 Let (Ma, a) = lex_min({(Mx, x) | px ∈ B}).

Lemma 6 There is a single process pa and it is a correct process.

Proof Let us first observe that B �= ∅ (Lemma 4). Moreover, as no two processes have
the same identity, there is a single process pa such that (Ma, a) = lex_min({(Mx, x) |
px ∈ B}. So, the proof of the lemma consists in showing that pa is a correct process.

Let assume by contradiction that pa is a faulty process. This means that there
is a time τa1 after which pa does no longer update PROGRESS[a]. As (Ma, a) =
lex_min({(Mx, x) | px ∈ B}), it follows that, after some time τa2, pa is perma-
nently considered leader by all the processes pi , and consequently, each time its
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timer expires, pi is such that k = a (line 16). Let τ ≥ max(τa1, τa2). After τ ,
there is at least one correct process pi that, each time it executes line 19 is such
that (k = a) ∧ (i ∈ witness_ki) (that correct process is not necessarily always
the same). Moreover, as PROGRESS[a] remains constant, we then always have
PROGRESS[a] = lasti[k]. Consequently, infinitely often one of the (t + 1) small-
est entries of SUSPICIONS[1..n, a] is increased, contradicting the fact that Ma is
bounded. �

Theorem 1 There is a time after which all the invocations leader() return the identity
of the same correct process.

Proof It follows from Lemma 5 that, after some finite time, all the leader() invoca-
tions return the identity of a process of B . It follows from lines 2–6 that this identity
is the identity a defined in Notation 4. Lemma 6 has shown that pa is a correct
process. �

Theorem 2 The protocol is write-optimal (i.e., after some time a single process
writes the shared memory). Moreover, be the execution finite or infinite, all variables,
but one entry of PROGRESS, are bounded.

Proof The intuition of the proof is the following. From Theorem 1, a leader is eventu-
ally elected. From then on, only the leader updates its entry of PROGRESS. Further-
more, eventually the witnesses of the leader do not change and they do not suspect
the leader anymore. Since only the entries of the witnesses with respect to the leader
can be changed, eventually no entry in SUSPICIONS[1..n,1..n] changes anymore.

Let us now describe the proof in detail. Let us first consider the array
SUSPICIONS[1..n,1..n]. Let τ be the time from which an eventual common leader
p� is elected. Due to Theorem 1 such a time τ does exist. After time τ we have the
following.

• As, after τ , any invocation of leader() at line 16 by a process pi returns always �,
we conclude that ∀i, ∀j �= �, SUSPICIONS[i, j ] is never updated after τ (line 24).

• Let τ ′ be the time from which we have M�(τ
′) = M�, and τ ′′ = max(τ, τ ′). We

now show that no process pi increases SUSPICIONS[i, �] more than once after
τ ′′, which implies that eventually SUSPICIONS[i, �] is not updated anymore.

Let us consider process pi that evaluates the predicate of line 19 after τ ′′. We
then have k = �.
– The predicate is true. In that case, the sub-predicate i ∈ witness_ki is also

true. This means that if pi increased SUSPICIONS[i, �], either M� would
be increased or not. The first case contradicts the definition of M� (namely,
M� = max({M�(τ)τ≥0})). On the other hand, if M� is not increased, then this
implies that pi stops being a witness of p�. Therefore, in all further evaluations
of line 19 by pi the predicate will be false.

– The predicate is false. In that case, it follows directly from the text of the protocol
that the shared variable SUSPICIONS[i, �] is not updated.

Let us now consider any shared variable PROGRESS[i], 1 ≤ i �= � ≤ n. This vari-
able is updated at line 11. After p� has been elected, the predicate leader() = i is
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always false. Moreover, as we have seen previously, there is a time τ ′ after which
no variable SUSPICIONS[x, y] is updated. It follows that, after τ ′, the predicate
susp_counti �= prev_susp_counti is always false. It follows that, there is a time after
which no PROGRESS[i] variable, 1 ≤ i �= � ≤ n, can be updated; which concludes
the proof of the theorem. �

The following corollary is an immediate consequence of Theorem 2 and line 28
of Fig. 2.

Corollary 1 Be the execution finite or infinite, all the timeout values remain bounded.

On the Process that is Elected The proof of the protocol relies on the assumption
AWB1 to guarantee that at least one correct process can be elected (i.e., the set B is
not empty, Lemma 4, and its smallest pair (Ma, a) is such that pa is a correct process,
Lemma 6). This does not mean that the elected process is a process that satisfies the
assumption AWB1. There are cases where it can be another process.

To see when this can happen, let us consider two correct processes pi and pj such
that pi does not satisfy AWB2 (its timer is never well-behaved) and pj does not satisfy
AWB1 (it never behaves synchronously). (A re-reading of the statement of Lemma 2
will make the following description easier to understand.) Despite the fact that (1)
pi is not synchronous with respect to a process that satisfies AWB1, and can conse-
quently suspects these processes infinitely often, and (2) pj is not synchronous with
respect to a process that satisfy AWB2 (and can consequently be suspected infinitely
often by such processes), it is still possible that pi and pj behave synchronously one
with respect to the other in such a way that pi never suspects pj . If this happens
SUSPICIONS[i, j ] remains bounded, and it is possible that the value Mj not only
remains bounded, but becomes the smallest value in the set B . It this occurs, pj is
elected as the common leader.

Of course, there are runs in which the previous scenario does not occur. That is
why the protocol has to rely on AWB1 in order to guarantee that the set B be never
empty.

3.5 Optimality Results

Let A be a protocol that implements Ω in ASn,t [AWB]. We have the following lower
bounds. These bounds are “matching” lower bounds. The intuition that underlies
them is simple. The first lower bound (Lemma 7) states that the leader has to write
forever the shared memory (this is required for the other processes not to suspect
it). The second lower bound (Lemma 8) states that a process has to read the shared
memory to perceive the progress of the leader (in order not to suspect it).

Lemma 7 Let R be any run of A with less than t faulty processes and let p� be the
leader chosen in R. Then p� must write forever in the shared memory in R.

Proof Assume, by way of contradiction, that p� stops writing in the shared memory
in run R at time τ . Consider another run R′ of A in which all processes behave like
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in R except p�, which behaves exactly like in R until time τ + 1, and crashes at that
time. Since at most t processes crash in R′, by definition of A, eventually a leader
must be elected. In fact, in R′ all the processes except p� behave exactly like in R

and elect p� as their (permanent) leader. These processes cannot distinguish R′ from
R and cannot detect the crash of p�. Hence, in R′ protocol A does not satisfy the
Eventual Leadership property of Ω , which is a contradiction. Therefore, p� cannot
stop writing in the shared memory. �

Lemma 8 Let R be any run of A with less than t faulty processes and let p� be the
leader chosen in R. Then every correct process pi , i �= �, must read forever from the
shared memory in R.

Proof Assume, by way of contradiction, that a correct process pi stops reading from
the shared memory in run R at time τ . Let τ ′ be the time at which pi chooses perma-
nently p� as leader. Consider another run R′ of A in which p� behaves exactly like in
R until time max(τ, τ ′) + 1, and crashes at that time. Since at most t processes crash
in R′, by definition of A, a leader must be eventually elected. In R′, we make pi to
behave exactly like in R. As it stopped reading the shared memory at time τ , pi can-
not distinguish R′ from R and cannot detect the crash of p�. Hence in R′, pi elects
p� as its (permanent) leader at time τ ′. Hence, in R′ protocol A does not satisfy the
Eventual Leadership property of Ω , which is a contradiction. Therefore, pi cannot
stop reading from the shared memory. �

The following theorem follows immediately from the previous lemmas.

Theorem 3 The protocol described in Fig. 2 is optimal with respect to the number
of processes that have to write the shared memory. It is quasi-optimal with respect to
the number of processes that have to read the shared memory.

The “quasi-optimality” comes from the fact that the protocol described in Fig. 2
requires that each process (including the leader) reads forever the shared memory (all
the processes have to read the array SUSPICIONS[1..n,1..n]).

4 A t-Resilient Protocol for ASn,t [AWB] with Bounded Variables Only

4.1 A Lower Bound Result

This section shows that any protocol that implements an eventual leader service Ω in
ASn,t [AWB] with only bounded memory has runs in which t + 1 correct processes
have to read and write forever the shared memory. As we will see, it follows from
this lower bound that the protocol described in Fig. 4 is optimal with respect to this
criterion.

Let A be a protocol that implements Ω in ASn,t [AWB] such that, in every run R

of A, the number of shared memory bits used is bounded by a value SR (which may
depend on the run). This means that in any run there is a time after which no new
memory positions are used, and each memory position has bounded number of bits.
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Theorem 4 The protocol A has runs in which at least t + 1 processes write forever
in the shared memory.

Proof The intuition that underlies this theorem and its proof is the following. If no
more than t processes write forever, it is not possible to distinguish between these
processes having crashed or being very slow. Then, we need at least one more process
that writes in order to be able to eventually elect a common leader.

To prove the claim we construct a run R of A such that:

1. R is fault free,
2. Process p1 is synchronous while the rest of processes are asynchronous, and
3. There is an infinite sequence of times τ0 < τ1 < τ2 < . . . such that, ∀i > 0, in the

interval (τi−1, τi] some process changes its leader or at least t + 1 processes write
in the shared memory.

Clearly, since a leader must be eventually elected in R and the number of processes
is finite, due to Item 3, there is a set of at least t + 1 processes that write in the shared
memory forever.

For simplicity, let us define τ0 = 0. This will be the base case. Then, for i > 0 let us
assume R is already constructed up to time τi−1. We construct now interval (τi−1, τi].
This interval is constructed differently depending on which of the following two cases
occurs.

• If at time τi−1 the leader of some process pj is an asynchronous process pk (i.e.,
k �= 1), we first consider a run Ri that behaves exactly like R up to time τi−1. Then,
after that time all processes advance synchronously (e.g., one step per time unit),
except pk which crashes at time τi−1 + 1. By Eventual Leadership, there is a time
τ > τi−1 in Ri at which no process considers pk as its leader. Then, let us define
τi = τ +1 and make R to behave in the interval (τi−1, τi] as follows. All processes
except pk behave in this interval exactly like in the interval (τi−1, τi] of Ri . Process
pk does not crash, but is stopped at time τi−1 + 1 and does not execute any step
until the end of the interval. This behavior is possible since pk is asynchronous.
Then, we have that in the interval (τi−1, τi] some process changed its leader. This
ends the first case.

• The second case occurs when at time τi−1 in R the leader of all processes is the syn-
chronous process p1. As before we now consider an auxiliary run Ri that behaves
exactly like R up to time τi−1. After that time all processes advance synchronously
(e.g., one step per time unit) in Ri . If some process pj changes its leader in Ri at
some time τ > τi−1, then we define τi = τ + 1 and make the interval (τi−1, τi] of
R behave exactly as interval (τi−1, τi] of Ri .

Otherwise, if no process changes its leader in Ri after τi−1, we have from
Lemma 7 that p1 writes in the shared memory forever. Let us assume by way of
contradiction that there is a time τ > τi−1 after which at most t −1 other processes
write forever in the shared memory in Ri . Since the shared memory is bounded,
some state (understood as the value of all its bits) S of the shared memory must oc-
cur infinitely often in Ri after τ . (First line in Fig. 3 where the state S is represented
by an area with stripes.)
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Fig. 3 Illustrating the runs Ri , R′
i

and R′′
i

Let us consider now a run R′
i which behaves exactly like Ri up to time τ ′ > τ at

which the shared memory is in state S (second line in Fig. 3). Then, at that time the
(up to t) processes that were writing in the shared memory (including p1) crash in
R′

i . The rest of the processes advance synchronously (and hence the AWB1 assump-
tion holds in R′

i ) until the smallest time τ ′′ > τ ′ at which some process changes its
leader or some process writes in the shared memory. This must eventually occur
by Eventual Leadership, since the leader of all the processes at time τ ′ has crashed
in R′

i . Note that in the interval (τ ′, τ ′′) all read operations find the shared memory
in state S.

Consider now another run R′′
i in which the up to t processes (including p1) that

write forever in Ri behave like they do in that run, while the rest of processes (let us
denote this set of processes by L) behave like in Ri up to time τ ′ (last line in Fig. 3.)
After τ ′, the processes in L are delayed (note that they are all asynchronous) so that
every time they read form the shared memory they find it in state S (see Fig. 3).
From the behavior of the processes in L in run R′

i and the fact that they cannot
distinguish run R′′

i from run R′
i , we have that there is a time τ ′′′ > τ ′ at which

some process in L changes its leader or writes in the shared memory in run R′′
i .

Then, we define τi = τ ′′′ + 1 and make interval (τi−1, τi] of R behave exactly like
that interval in R′′

i .
Figure 3 summarizes the previous reasoning. In the first run Ri , after τ , only t

processes write forever. The same state S (depicted by the area with stripes) occurs
repeatedly forever. In the run R′

i , these t processes crash in state S (they crash at
the time marked with a cross). The read operations from the other processes are
indicated with black dots. In the run R′′

i , the same processes as in R′
i read while

the system in the state S. �

4.2 A Protocol with Only Bounded Variables

Principles and Description As already indicated, we are interested here in a pro-
tocol whose variables are all bounded. To attain this goal, we use a hand-shaking
mechanism. More precisely, we replace the shared array PROGRESS[1..n] and all
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the local arrays lasti[1..n], 1 ≤ i ≤ n, by two shared matrices of 1WMR boolean
values, denoted PROGRESS[1..n,1..n] and LAST[1..n,1..n].

The hand-shaking mechanism works a follows. Given a pair of processes pi and
pk , PROGRESS[i, k] and LAST[i, k] are used by these processes to send signals to
each other. More precisely, to signal pk that it is alive, pi sets PROGRESS[i, k] equal
to ¬LAST[i, k]. In the other direction, pk indicates that it has seen this “signal” by
canceling it, namely, it resets LAST[i, k] equal to PROGRESS[i, k]. So, pi writes
PROGRESS[i, k] and LAST[k, i], while pk reads them. It follows from the essence of
the hand-shaking mechanism that both pi and pk have to write shared variables, but
as shown by Corollary 2 below, this is the price that has to be paid to have bounded
shared variables.

Using this simple technique, we obtain the protocol described in Fig. 4. Let
us recall that pi is the owner of PROGRESS[i, k] and LAST[k, i], 1 ≤ k ≤ n,
i.e., it is the only process that can write them. So, pi manages two additional lo-
cal arrays progressi[1..n] and lasti[1..n], such that progressi[k] is a local copy of
PROGRESS[i, k], and lasti[k] is a local copy of LAST[k, i]. (As in the first protocol,
this allows saving shared memory accesses.)

In order to capture easily the parts that are new or modified with respect to the
previous protocol, the line number of the new statements are suffixed with the letter
R (so the line 11 of the previous protocol is replaced by six new lines 11.R1–11.R6,
while each of the lines 20, 21 and 22 is replaced by a single line). This allows a better
understanding of the common principles on which both protocols rely.

Proof of Correctness The statement of the Lemmas 1–6, and Theorem 1 are still
valid when the shared array PROGRESS[1..n] is replaced by the shared matrices
PROGRESS[1..n,1..n] and LAST[1..n,1..n]. As far as their proofs are concerned,
the proofs of Lemma 1, Lemma 3, Lemma 4, Lemma 5, Lemma 6, and Theorem 1
are nearly verbatim the same.

The proofs of Lemma 2 has to be slightly modified to suit the new context. Basi-
cally, it differs from its counterparts of Sect. 3.4 in the way it establishes the prop-
erty that, after some time, no correct process pi misses an “alive” signal from a
process that satisfies the assumption AWB1. (More specifically, the sentence “there
is a time after which PROGRESS[k] does no longer increase” has to be replaced by
the sentence “there is a time after which PROGRESS[k, i] remains forever equal to
LAST[k, i]”.)

A reasoning similar to the one in the proof of Theorem 2 shows that each vari-
able SUSPICIONS[j, k], 1 ≤ j, k ≤ n, is bounded. Combined with the fact that the
variables PROGRESS[j, k] and LAST[j, k] are boolean, we obtain the following the-
orem.

Theorem 5 All the variables used in the protocol described in Fig. 4 are bounded.

Concerning the variables that are updated, we have the following theorem.

Theorem 6 Let p� be the process elected as the eventual common leader in the
protocol described in Fig. 4. There is a set of t processes pi , i �= �, such that eventu-
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task T 1:
(1) when leader() is invoked:
(2) for_each k ∈ {1, ..., n} do
(3) let witnessi [k] = set of (t + 1) process identities such that

∀x ∈ witnessi [k], ∀y /∈ witnessi [k]: (SUSPICIONS[x, k], x) < (SUSPICIONS[y, k], y);
(4) let suspi [k] = �x∈witnessi [k] SUSPICIONS[x, k]
(5) end_for;
(6) return(�) where � is such that (−, �) = lex_min({(suspi [k], k)}1≤k≤n)

task T 2:
(7) repeat_forever
(8) let my_witnessesi = set of (t + 1) process identities such that

∀x ∈ my_witnessesi , ∀y /∈ my_witnessesi : (SUSPICIONS[x, i], x)

< (SUSPICIONS[y, i], y);
(9) let susp_counti = �x∈my_witnessesi SUSPICIONS[x, i];
(10) if

(
(leader() = i) ∨ (susp_counti �= prev_susp_counti )

)

(11.R1) then for_each k ∈ {1, . . . , n} do
(11.R2) last_ki ← LAST[i, k];
(11.R3) if =(progressi [k] = last_ki )

(11.R4) then progressi [k] ← ¬ last_ki ; PROGRESS[i, k] ← progressi [k]
(11.R5) end_if
(11.R6) end_for
(12) end_if;
(13) prev_susp_counti ← susp_counti
(14) end_repeat

task T 3:
(15) when timeri expires:
(16) k ← leader();
(17) let witness_ki = set of (t + 1) process identities such that

∀x ∈ witness_ki , ∀y /∈ witness_ki : (SUSPICIONS[x, k], x) < (SUSPICIONS[y, k], y);
(18) let susp_ki = �x∈witness_ki

SUSPICIONS[x, k];
(19) if

(
(k �= i) ∧ (i ∈ witness_ki ) ∧ (k = prev_ldi ) ∧ (susp_ki = prev_suspi )

)

(20.R1) then progress_ki ← PROGRESS[k, i];
(21.R1) if (progress_ki �= lasti [k])
(22.R1) then lasti [k] ← progress_ki; LAST[k, i] ← progress_ki
(23) else suspicionsi [k] ← suspicionsi [k] + 1;
(24) SUSPICIONS[i, k] ← suspicionsi [k]
(25) end_if
(26) end_if;
(27) prev_ldi ← k; prev_suspi ← susp_ki ;
(28) timeouti ← susp_ki ; set timeri to timeouti

Fig. 4 t -resilient eventual leader election with all variables bounded (code for pi )

ally the only variables that may be written are PROGRESS[�, i] (written by p�) and
LAST[�, i] (written by pi ).

Proof The intuition of the proof is similar to that of Theorem 2, but in this case
the hand-shaking mechanism forces the witnesses pi of the leader p� to update
their corresponding entries LAST[�, i], and p� to update the corresponding entries
PROGRESS[�, i] (instead of PROGRESS[�] as done in the algorithm in Fig. 2). The
following is a detailed proof.
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The proof that (1) there is a time after which the variables SUSPICIONS[j, k],
1 ≤ j, k ≤ n, are no longer written, and the proof that (2) there is a time after which
PROGRESS[x, j ], 1 ≤ x, j ≤ n, x �= �, is no longer written, are the same as the
proof done in Theorem 2. Let us now consider any variable LAST[x, y], x �= �. As,
after p� has been elected, no correct process px , x �= �, updates PROGRESS[x, y]
(line 11.R3), it follows that there is a time after which the predicate LAST[x, y] =
PROGRESS[x, y] remains forever true for 1 ≤ x, y ≤ n and x �= �. Consequently,
after a finite time, the test of line 21.R1 is always false for px , x �= �, and LAST[x, y]
is no longer written.

The fact that SUSPICIONS[j, k], 1 ≤ j, k ≤ n, eventually never changes implies
that the set of witnesses of p� will eventually stabilize. A process px that is not
in this set of stable witnesses of p� eventually stops writing LAST[�, x], because
the predicate at line 19 is always false. Once this has happened, p� will eventu-
ally set PROGRESS[�, x] = ¬LAST[�, x] (line 11.R4). After that, the predicate at
line 11.R3 remains forever false and PROGRESS[�, x] is no longer written. Addition-
ally, note that p� is always witness of itself, since initially SUSPICIONS[�, �] = 0,
while SUSPICIONS[x, �] = 1 for all x �= �, and SUSPICIONS[�, �] never increases
(from the (k �= i) sub-predicate at line 19). Note as well that LAST[�, �] is never
modified (also from the (k �= i) sub-predicate at line 19), and hence PROGRESS[�, �]
eventually stops being written.

Hence, only the variables PROGRESS[�, x] and LAST[�, x] for the set of t

processes px , x �= �, that are stable witnesses of p� are written forever. �

Finally, the next corollary follows directly from the above theorem and Theorem 4.

Corollary 2 The protocol described in Fig. 4 is optimal with respect to the number
of processes that have to write the shared memory.

5 Conclusion

This paper has addressed the problem of electing an eventual leader in an asynchro-
nous shared memory system. It has three main contributions.

• The first contribution is the statement of an assumption (a property denoted AWB)
that allows electing a leader in the shared memory asynchronous systems that sat-
isfy that assumption. This assumption requires that after some time (1) there is
a process whose write accesses to some shared variables are timely, and (2) the
other processes have asymptotically well-behaved timers. The notion of asymptot-
ically well-behaved timer is weaker than the usual timer notion (where the timer
durations have to monotonically increase when the values to which they are set
increase). This means that AWB is a particularly weak assumption.

• The second contribution is the design of two protocols that elect an eventual leader
in any asynchronous shared memory system that satisfies the assumption AWB.
In addition of being t-resilient (where t is the maximum number of processes al-
lowed to crash), and being based only on one-writer/multi-readers atomic shared
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variables, these protocols enjoy noteworthy properties. The first protocol guaran-
tees that (1) there is a (finite) time after which a single process writes forever the
shared memory, and (2) all but one shared variables have a bounded domain. The
second protocol uses (1) a bounded memory but (2) requires that t + 1 processes
forever write the shared memory.

• The third contribution shows that the previous tradeoff (bounded/unbounded mem-
ory vs number of processes that have to write) is inherent to the leader election
problem in asynchronous shared memory systems equipped with AWB. It follows
that both protocols are optimal, both with respect to the number of processes that
have to forever write the shared memory, the second with respect to the bounded-
ness of the memory.

Several questions remain open. One concerns the first protocol. Is it possible to
design a leader protocol in which there is a time after which the eventual leader is not
required to read the shared memory? Another question is the following: is the second
protocol optimal with respect to the size of the control information (bit arrays) it uses
to have a bounded memory implementation? Finally, a very interesting question (sug-
gested by a referee) is the following one: are there synchrony assumptions that allow
designing an algorithm using only a linear (wrt the number of processes n) num-
ber of shared variables (as they use a matrix SUSPICIONS[1..n,1..n], the proposed
algorithms require a quadratic number of shared variables)?
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able comments that helped us improve the content and the presentation of the paper.
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