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Abstract

The optimal positioning of switches in a mobile communication network is an important task, which can save costs and improve the

performance of the network. In this paper we propose a model for establishing which are the best nodes of the network for allocating the available

switches, and several hybrid genetic algorithms to solve the problem. The proposed model is based on the so-called capacitated p-median problem,

which have been previously tackled in the literature. This problem can be split in two subproblems: the selection of the best set of switches, and a

terminal assignment problem to evaluate each selection of switches. The hybrid genetic algorithms for solving the problem are formed by a

conventional genetic algorithm, with a restricted search, and several local search heuristics. In this work we also develop novel heuristics for

solving the terminal assignment problem in a fast and accurate way. Finally, we show that our novel approaches, hybridized with the genetic

algorithm, outperform existing algorithms in the literature for the p-median problem.

# 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the last decade, mobile telecommunication networks have

known an extraordinary development, due to the necessity of

information transfer among users. Mobile communication

networks can be modelled as formed by hexagonal cells, each

corresponding to a different cover zone, and associated to a

given base station (BTS). The cell is the unit of a cellular

communication system. A certain number of cells are chosen to

install switches,1 which route calls to another base station or to

a public switched telephone network [1].

The design of mobile networks often involves problems of

devices location (BTS, multiplexers, switches, etc.)

[6,20,21,22]. There are works specifically related to the design

of the BTS-switch structure, like the BTS location problem [2],

in which the objective is to obtain the optimal location of BTSs

in a grid, such that the radio coverage of the considered grid is

maximum. Another important problem, directly related to the

BTS-switch structure in mobile networks, is the assignment of

cells to switches problem [1,3–5]. This problem considers that

the BTSs and switches of the network are already positioned,

and its objective is to assign each BTSs to a switch, in such a

way that a capacity constraint have to be fulfilled. The objective

function is then formed by two terms: first the sum of the

distances from the BTSs to the switches must be minimum, and

there is another term related to handovers between cells

assigned to different switches, which must be minimized (see

[3] for details). In addition, there are other location problems

related to the design of communications network, either mobile

networks [7–12] or computer networks [13,14].

Among the algorithms applied to solve the above-mentioned

problems, there are a wide variety of heuristics and

metaheuristics approaches: in [2] several heuristics are
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presented and applied to solve the BTSs location problem. The

performance of genetic algorithms (GA), Tabu search (TS) and

simulated annealing (SA) approaches are compared with that of

random walk and greedy approaches. In [10], a hybrid k-means

genetic algorithm is applied to the design of indoor cellular

networks. Other hybrid algorithms have been applied to the BTS-

switch assignment problem in [4,5]. Both works deal with the

same problem, discussing different approaches to it, based on

mixing GA, TS and SA algorithms. SA has also been also used in

the design of the BTS-switch structure of a mobile commu-

nication network. In [1], a SA algorithm with a pricing

mechanism is used to tackle the assignment of cells to switches

problem. The results obtained are compared with a lower bound

for the problem, and the authors show that their approach is able

to obtain solutions quite close to the problem’s lower bound.

Another SA approach is presented in [7] for the design of

telecommunication access networks with reliability constraints.

Finally, a SA algorithm is applied to the design of UMTS access

network topology in [8]. The SA algorithm in this work is used as

global search heuristic, and mixed with a local search technique

which searches for tree topologies of radio base stations.

In spite of the huge work carried out on the designing of the

access part of mobile communication networks, there are still

some problems which have not been completely studied.

Specifically, this paper deals with the problem of the location of

switches in mobile telecommunication networks. Note that, in

the literature revised above, there are several works dealing

with the problem of assigning cells to switches, locating BTSs

and designing the access topology of mobile networks, but

there are very few works tackling the problem of locating

switches in such networks. This is mainly because, in the

majority of cases, the position of switches is considered a pre-

fixed parameter, usually installed within the infrastructure of

some BTSs in the network, or considering the most traffic

managing BTSs to be the network’s switches. On the other

hand, a fast and easy model for the location of switches, and the

corresponding BTSs’ assignment to switches, is applicable in

the field of regulatory studies in telecommunications [30,31].

In this paper we propose a model for the optimal location of

switches in a mobile communication network (switch location

problem, SLP hereafter), and several hybrid genetic algorithms

to solve the problem. Our model starts from the premise that the

switches must be located in existing BTSs, in order to use the

existing infrastructure, and save costs. We need then to establish

which are the optimal BTSs for allocating a given number of

switches, taking into account several parameters. First, the

distance between switches and their associated BTSs must be

minimum, in order to maximize the reliability of the radio link

between switches and BTSs. Second, a constraint of capacity

must be fulfilled, since a switch is limited on the number of BTSs

that it can manage. Thus, we propose to use the terminal

assignment problem (TA) [15–18] as a model to evaluate the

selection of a set of BTSs to locate switches. The SLP with the TA

for evaluating the set of BTSs, is equivalent to the well known

capacitated p-median problem, which has been tackled before in

the literature in different fields and applications [19,23], and it is

known to be NP-hard [24]. We propose several hybrid genetic

algorithms for solving the SLP, based on the hybridization of a

conventional GA and several local search algorithms for the TA.

We will show the performance of the local algorithms for solving

the TA, comparing their performance with thus of existing

approaches. We will also test our approaches for the SLP in

several instances, with different number of BTSs and switches

available.

The rest of the paper is structured as follows: next section

defines the SLP in a mobile communications network. In this

section we show that it can be split in two subproblems, the

selection of the set of controllers and a terminal assignment

problem to evaluate this selection. In Section 3 we present our

hybrid genetic algorithms for solving the SLP. In Section 4 we

test the proposed algorithms for the TA and for the SLP, by

means of several computational experiments, where the

performance of our approaches is studied. Finally, Section 5

concludes the paper.

2. Problem definition

Let us consider a mobile communications network formed

by N nodes (BTSs), where a set of M switches must be allocated

in order to manage the network traffic and other network

resources. It is always fulfilled that M < N, and in the majority

of cases M� N. We start from the premise that the existing

BTSs infrastructure must be used to locate the switches, since it

saves costs. Thus, the SLP consists of selecting M nodes out of

the N which form the network, in order to locate in them our M

switches. Note that there are
M
N

� �
possibilities of selecting M

nodes out of N, and this selection should be optimal with

respect to a given objective or cost function. In order to define

an objective function for the SLP, a TA must be solved. Thus the

SLP can be divided in two subproblems: first, the selection of

the M controllers. Second, a TA in the calculation of the cost

function for each controllers selection.

2.1. Cost function calculation in the SLP: the terminal

assignment problem

Let us consider a system formed by K terminals and M

concentrators. We have a vector w ¼ ½w1; . . . ;wk� of terminal

weights and a vector p = [p1, . . ., pM] of concentrator capacities.

Finally, we also have an M � K matrix of distances D, where

dij � 0 gives the distance or cost of connecting terminal j to

concentrator i.

The TA consists of determining the minimum total cost links

to form a network, by connecting the terminals to the

concentrators, subject to two constraints. First, each terminal

must be assigned to one and only one of the concentrators.

Second, the capacity of a concentrator cannot be smaller than

the sum of the weights of the terminals assigned to it.

This problem can be seen as an integer-programming

problem [15]. Mathematically it can be stated as follows. Let X

be a binary matrix such that element xij = 1 if terminal j has

been assigned to concentrator i, and xij = 0 otherwise.

S. Salcedo-Sanz et al. / Applied Soft Computing 8 (2008) 1486–1497 1487
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Find X which minimizes

ZðXÞ ¼
XM

i¼1

XK

j¼1

di jxi j (1)

subject to

XM

i¼1

xi j ¼ 1; j ¼ 1; 2; . . . ;K;

XK

j¼1

w jxi j � pi; i ¼ 1; 2; . . . ;M; xi j 2f0; 1g

2.2. Modelling the SLP as a capacitated p-median problem

Consider now the SLP. Let us suppose that each node in the

network may act as a BTS or as a switch, depending on the

necessities of the network’s designer. If we have a particular

solution for the SLP, there will be M nodes serving as switches,

and K = N � M nodes which are BTSs. For this particular

solution, we can associate BTSs in the SLP with terminals in

the TA, and switches in the SLP with concentrators in the TA.

We have therefore that a particular solution for the SLP is an

instance of the TA, which can be solved using any algorithm for

the TA existing in the literature. The solution obtained for the

TA, has associated an objective function value given by Eq. (1).

The SLP consists then of finding the location of switches into

the nodes of the network which makes this objective function

minimum. With this definition, the SLP is equivalent to a

capacitated p-median problem [24,19], which has been tackled

before in the literature, and applied to different real

optimization problems [23].

Mathematically, the formulation of the SLP as a capacitated

p-median problem is as follows.

I = {1, . . ., N} be the set of nodes in the network, M be the

number of nodes which will be selected as controllers for the

network. Find a binary vector y such that

S ¼
�

j such that y j ¼ 1

�
; Z ¼ min

� X
i2 I�S

X
j2 S

di jxi j

�

(2)

subject toX
i2 I�S

w jxi j � piyi; j2 S (3)

X
j2 S

xi j ¼ 1; i2 I � S (4)

CðSÞ ¼ M (5)

yi 2f0; 1g; j2 I (6)

xi j 2f0; 1g; i2 I � S; j2 S (7)

with C(S) number of elements of S. Note that this definition

includes the resolution of a terminal assignment problem for

each value of vector y.

2.3. An example

Consider the SLP defined by the collection of N = 13 nodes,

with M = 3 switches available, shown in Table 1, and displayed

in Fig. 1(a). This SLP instance consists of choosing the 3 best

nodes of the network for the location of the corresponding

switches. Note that there are
13

3

� �
possibilities of locating 3

switches in a network of 13 nodes. As has been mentioned before,

each of the possible placements defines a TA, with M = 3

concentrators and K = 10 terminals, and an objective function

given by Eq. (1). The best TA solution (the one with minimum

value of function 1 after solving the TA) will be considered as the

solution for the SLP. In this case, it is easy to show that the best

location of switches is given when the TA is defined as in

Fig. 1(b), with an objective function value of 185.4.

3. Proposed hybrid genetic algorithms

In this section we present several hybrid genetic algorithms

for solving the SLP. Following the split structure of the SLP in

two subproblems, our algorithms are based on a global–local

search technique. First, we use a GA for choosing which nodes

serve as switches, second, a local search heuristics is used to

solve the associated TA and obtaining a value of the objective

function.

3.1. Global search heuristic

We use a conventional GA with a restricted search as global

search algorithm. GAs have been successfully applied before to

a wide variety of combinatorial optimization problems, and

therefore we suppose that the reader is familiarized with its

conventional implementation. Readers not familiarized with

these technique can consult [25] as basic bibliography. Table 2

shows the algorithmic description of a conventional genetic

algorithm: It works by encoding a population of binary strings,

representing a possible selection of switches among the nodes

which form network. In our case, the length of each individual

is equal to this number of nodes of the network. A selection

Table 1

Nodes weight, capacity and coordinates for the problem in Section 2.3

Node # Weights Capacities Coordinates

1 4 12 (19, 76)

2 3 14 (50, 30)

3 2 13 (21, 79)

4 5 12 (54, 28)

5 4 13 (28, 75)

6 4 13 (84, 44)

7 2 12 (67, 17)

8 3 12 (90, 41)

9 1 14 (68, 67)

10 3 14 (24, 79)

11 4 13 (38, 59)

12 5 12 (27, 86)

13 4 13 (07, 76)

S. Salcedo-Sanz et al. / Applied Soft Computing 8 (2008) 1486–14971488
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mechanism using the roulette wheel method [25], two-points

crossover and flip-type mutation are applied to evolve the

population. Also, the best individual in each generation is

passed over to the next one, with an operator of elitism.

To deal with the SLP, this conventional implementation of

the GA is not appropriate, since it cannot tackle the constraint

imposed by the number of 1s in the binary strings (Eq. (5)). We

must introduce then a mechanism for dealing with this SLP

constraint. This constraint has been previously applied in the

literature. Specifically, the same constraint regarding the

number of 1s in GA and SA have been solved by means of

the so-called restricted search operator in [26] and [27]. The

restricted search basically considers one extra operator to be

added to the conventional GA, in the following way: after the

application of the crossover and mutation operators, the

individual x will have p 1s that, in general, will be different

from the desired number of desired 1s in x, M. If p < M the

restricted search operator adds (M � p) 1s in random positions,

and if p > M, the restricted search operator randomly selects

( p �M) 1s and removes them from the binary string. This

operator can be described in pseudo-code, as follows:

The GA using the restricted search will look for the best

binary vector y in terms of the SLP objective function. This

objective function is obtained by means of solving the TA

associated to a given binary vector y. The following section

describes the local search algorithm we have chosen to be

hybridized with the global search techniques.

3.2. Local search algorithms

3.2.1. A greedy algorithm for the TA

One of the most important papers on TAwas the approach by

Abuali et al. [15]. In this article, the authors proposed a greedy

algorithm for solving the TA. This greedy approach starts from

a random permutation of terminals p(lK) (order in which we

assign the terminals to controllers). Then, the cost function to

optimize is the Euclidean distance between terminal i and

concentrator j. The terminals are assigned to concentrators

following the order in p(lK), in such a way that a terminal is

allocated to the closest concentrator if there is enough capacity

to satisfy the requirement of the particular terminal. If the

concentrator cannot handle the terminal, the algorithm searches

for the next closest concentrator and performed the same

evaluation. This process is repeated until an available

concentrator is found, and the algorithm is continued to assign

the remaining terminals, if there are any. In the case that no

concentrator can accommodate the required capacity of a given

Fig. 1. (a) Example of SLP; (b) optimal solution.

Table 2

Algorithmic description of a conventional genetic algorithm

S. Salcedo-Sanz et al. / Applied Soft Computing 8 (2008) 1486–1497 1489
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terminal, the search is considered failed, and the solution

provided by the greedy algorithm is not feasible:

3.2.2. A modified greedy approach for the TA

The greedy approach defined in [15] has a major drawback:

it is computationally inefficient, since its performance and

computational time depend on the number of permutations

defined. To solve this point, we propose a modification of the

algorithm for reducing its computational time, and trying to

improve its performance on the TA. Instead of defining a

number of permutations, we define only one permutation p*

which sorts the terminals for their distance to the nearest

concentrator. We start assigning terminals to concentrators

following the order given by permutation p*. When a given

terminal i cannot be assigned to its nearest concentrator k (due

to the capacity constraint), we calculate the distance of all the

terminals in k to the second nearest concentrator. If the distance

of a terminal j (already assigned to k) to its second closest

concentrator is smaller than the distance from terminal i to its

second closest concentrator, and w j�wi, then we reassign

terminal j to its second closest concentrator, and substitute it by

terminal i. In the case that there is not such a terminal or with

the requirements of distance or weight, terminal i is assigned to

its second closest concentrator. We call this modified greedy

approach as the GreedyExp algorithm for the TA. It is expected

that the GreedyExp approach to be computationally much

efficient than the greedy algorithm in [15]. We will show its

performance on the TA in Section 4.

3.2.3. Local heuristics based on linear-programming

relaxation of the TA

The linear programming (LP) relaxation of the TA can be

defined as follows. Find X̂ which minimizes

ZðX̂Þ ¼
XM
i¼1

XK

j¼1

di jx̂i j (8)

subject to

XM

i¼1

x̂i j ¼ 1; j ¼ 1; 2; . . . ;K;
XK

j¼1

w jx̂i j � pi; i

¼ 1; 2; . . . ;M; x̂i j 2 ½0; 1�

Note that the solution X̂ of the LP relaxation satisfies that

ZðX̂Þ is a lower bound on the cost of an optimal solution of the

TA, i.e. ZðX̂Þ � ZðXÞ.
In this section we present two heuristics for the TA which

start from the solution X̂ to the LP relaxation, and use the

vectors of capacities p and weights w as local information to

build a solution of the TA. The output of each heuristic is a

result matrix X*, and its corresponding cost value Z*.

The first heuristic we propose is called the XWLP algorithm,

since it uses an ordering of terminals and concentrators which

depends on the product of the elements of X̂ and w as follows:

S. Salcedo-Sanz et al. / Applied Soft Computing 8 (2008) 1486–14971490
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Note that in this heuristic, the terminals corresponding to

large elements of matrix X0 are assigned first, breaking ties

randomly. If there is enough capacity available, the terminal is

assigned to the concentrator, the terminal’s weight is subtracted

from the remaining concentrator’s capacity, and the entire row

of matrix X0 is removed from further consideration, by marking

it with a value �1. This process ensures that the capacity

constraint will not be violated. The resulting solution is

unfeasible if not all the terminals are assigned to concentrators.

In this case the solution cost is fixed to 1.

The second heuristic that we propose is called maximum

weight first linear programming (MWFLP) heuristic:

This heuristic selects the terminals to be assigned following

the ordering given by the maximum of the vector of weights w.

If there is a tie, the heuristic chooses randomly among the

unassigned terminals with equal weight. For a chosen terminal,

the order in which the concentrators are considered depends on

the elements of matrix X̂, breaking ties at random. One terminal

is assigned to a concentrator if and only if the concentrator has

enough capacity for handle the terminal. If so, the row of the

matrix corresponding to the terminal is removed from further

consideration by marking it with a value of �1. This process

ensures that the capacity constraint is fulfilled. The solution will

be unfeasible if any of the terminals has not been assigned. In

this case the solution cost is fixed to 1.

3.2.4. Lower bounds for the SLP

In order to obtain comparison algorithms for assessing the

performance of our approaches in the SLP, we consider two

lower bounds (LB) for the SLP. The first LB is given by the

linear-programming relaxation of the TA, given in Section

3.2.3. If we hybridize this LB with the GA proposed in Section

3.1, we will obtain an algorithm which provides a LB for the

SLP. We call this lower bound as LBLP.

The second LB for the TA has been defined in [5]:

LB1 ¼
XN�M

i¼1

min
k
ðdikÞ (9)

Note that this LB comes from the solution obtained by

assigning each node i to the nearest controller k. It is important

to see that this LB is equivalent to have controllers with infinite

capacity, in such a way that they can handle any number of

nodes. This LB provides then the best possible assignment if no

capacity constraint is considered. The SLP without the capacity

constraint is similar to the so-called p-median problem (see

[28,29] for details). We can use then the GA in Section 3.1

hybridized with the LB1 to obtain a LB for the SLP.

4. Computational experiments and results

We divide this section in two major parts. The first part is

devoted to test the performance of the proposed heuristics for

the TA, presented in Section 3. The second part will show the

performance of the hybrid algorithms for the SLP.

4.1. Experiments in the TA

First we would like to test the performance of the algorithms

we have proposed for the TA, as it is a key part for accurately

S. Salcedo-Sanz et al. / Applied Soft Computing 8 (2008) 1486–1497 1491
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solve the SLP. To do it, we have run a set of experiments, where

the performance and computational time of the different

algorithms for the TA are evaluated.

To test the performance of the algorithms, we use a

300 � 300 grid, where a set of K = 200 terminals and M = 10

concentrators will be placed. First of all, we randomly and

uniformly set the concentrators’ coordinates (ri1, ri2), for i = 1,

. . ., M, in the grid. Then, the terminals’ coordinates (lj1, lj2), for

j = 1, . . ., K, are obtained starting from those of the

concentrators. For each terminal j, a concentrator k is randomly

and uniformly chosen, and the terminal coordinates are

obtained as

l j1 ¼ rk1 þ Nð0; sÞ (10)

l j2 ¼ rk2 þ Nð0; sÞ (11)

where N(0, s) is a normally distributed one-dimensional ran-

dom number, of mean 0 and variance s. This framework allows

different cases in the distribution of terminals and concentra-

tors, depending on the parameter s. If this variance s is small,

the terminals will be placed in the surroundings of the con-

centrators. Fig. 2 shows an example of this, using a variance

s = 10. On the other hand, for large values of s, the terminals

will be almost uniformly spread in the grid. This can be seen in

Fig. 3, where a value of s = 200 has been used. The testing of

the heuristics has been carried out in this framework, by varying

the parameter s from 5 to 200, in steps of 5, and running 20

experiments for each value of s.

The weights of the terminals have been randomly chosen,

with values between 2 and 6. The capacities of the

concentrators have been calculated from the terminal weights,

as follows:

pi ¼ round

�PK
j¼1 w j

M

�
þ ð1þ roundðUð0; 4ÞÞÞ (12)

where U(0, 4) is a uniformly distributed number between 0 and

4. Note that, with this definition
PK

j¼1 w j <
PM

i¼1 pi. Finally,

the distance matrix has been computed as the Euclidean dis-

tance between each pair of terminal-concentrator.

Note that XWLP and MWFLP algorithms proposed in this

paper make random choices when ties are encountered. This

may influence on the chances of finding a feasible solution and

its quality. Empirically, we have found that in these test cases,

the random choices do not influence much the performance of

the XWLP algorithm. However, the quality of the solutions

obtained with the MWFLP algorithm can vary from one run to

another. For these reasons, in the evaluation performed we only

execute the XWLP algorithm once for each problem, while we

repeat the execution of the MWFLP algorithm 200 times, and

keep the best solution found. We have tested the greedy

approach in [15] by running it with 15,000, 30,000 and 50,000

permutations.

The computational time of the compared algorithms has also

been analyzed by means of computational experiments. To do

this, we have created a new set of experiments, fixing the

parameter s and varying the number of terminals K from 50 to

200. We have run 30 experiments with each value of K,

obtaining the CPU time employed by each heuristic. All the

experiments have been carried out in a Pentium IV processor

(2.5 GHz).

Fig. 4 shows the results obtained by the different algorithms

tested. The figure represents the parameter s in the x-axis, and

the cost of each algorithm divided by the cost of the LBLP in the

y-axis. Each point of the curves was obtained as an average of

the 30 experiments in each variance. Note that the best results

are obtained using the MWFLP algorithm, followed by the

XWLP. Both heuristics improve the results obtained by the

GreedyExp and the greedy approach with 15,000, 30,000 and

50,000 permutations. Note also that the GreedyExp algorithm

obtains better results than the greedy algorithm.

The dashed line in Fig. 4 represents the LBLP. It is interesting

that the differences between this LB and the result obtained by

the MWFLP and XWLP heuristics are small. There are,

however, some differences depending on the value of s. It
Fig. 2. Example of TA test problem, M = 10, K = 200 and s = 10. The squares

and circles stand for concentrators and terminals, respectively.

Fig. 3. Example of TA test problem, M = 10, K = 200 and s = 200. The squares

and circles stand for concentrators and terminals, respectively.

S. Salcedo-Sanz et al. / Applied Soft Computing 8 (2008) 1486–14971492
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seems that in the cases where the terminals surround the

concentrators (small value of s), the differences between

the proposed heuristics and the LBLP is larger than in the

experiments where the terminals are almost randomly

distributed in the grid (large value of s). These differences

are small, about 2% in the best cases.

Regarding the computational time of the compared

heuristics, Fig. 5 shows the CPU time in seconds of each

algorithm in TA examples of different size. Note that the

GreedyExp approach is the algorithm with less computational

cost. XWLP heuristic also has a good computational time, and

solves all the instances in less than 1 s. The MWFLP heuristic

solves all the instances in less than 5 s, and obtains better results

than the rest of the algorithms, as was shown in Fig. 4. The

greedy heuristic with 15,000, 30,000 and 50,000 permutations

are more time-consuming algorithms than the other heuristics,

as can be seen in the figure.

4.2. Experiments in the SLP

In order to test the hybrid algorithms in the SLP, we have

proposed several SLP instances of different difficulty. Table 3

shows the main characteristics of the instances tackled. There

are six SLP instances, with different values for N and M. we

have small size networks (Instances 1 and 2), medium size

networks (3 and 4) and large size networks (5 and 6). Instance 1

is the small example of Section 2.3. Instances 2 and 3 have been

randomly generated in a 100 � 100 grid, and Instances 4–6

have been generated over a 200 � 200 grid. The capacities of

all the nodes have been randomly generated between values of

15 and 22, and the weight of the nodes have also been randomly

generated between 1 and 5. It is expected that the difficulty of

the instances increases with the number of nodes in each

instance. The parameters of the conventional GA used in the

simulations are population of 50 individuals, 200 generations,

crossover probability Pc = 0.6 and mutation probability

Pm = 0.01. We compare the performance of the GA hybridized

with the MWFLP, GreedyExp algorithm and greedy algorithm

in [15] with 50,000 permutations. We also include a comparison

with the results obtained by a GA proposed in [19] for the

capacitated capacitated p-median problem.

Table 4 shows the results obtained by the hybrid algorithms

tested. We have run each algorithm 30 times, keeping the values

of the best, mean and standard deviation. We also include the

lower bounds for the considered instances defined in Section

Fig. 5. CPU time in seconds in the TA simulations performed for the different

heuristics considered.

Table 3

Main characteristics of the SLP instances tackled

Instance # Nodes Controllers Grid

1 13 3 100 � 100

2 20 4 100 � 100

3 40 6 100 � 100

4 60 8 200 � 200

5 80 10 200 � 200

6 100 12 200 � 200

Fig. 4. Results obtained by the heuristics considered in the TA simulations

performed.

Table 4

Results obtained (best/avg/S.D.) by the different approaches studied, in the SLP instances considered

p # GA_MWFLP GA_Greedy50000 GA_GreedyExp GA in [19] LB1 LBLP

1 185.4/185.4/0.0 185.4/185.4/0.0 185.4/185.4/0.0 185.4/185.4/0.0 120.0 181.7

2 357.0/357.0/0.0 357.0/359.6/4.0 357.0/357.0/0.0 357.0/358.4/3.5 357.0 357.0

3 468.1/471.7/2.3 492.8/501.4/6.15 471.5/474.3/1.6 485.3/497.3/6.8 449.4 462.6

4 1420.3/1444.9/13.9 1476.4/1553.5/42.5 1425.8/1452.7/16.6 1457.2/1503.6/32.7 1346.4 1385.0

5 1699.2/1748.4/20.2 1767.5/1827.9/29.9 1704.0/1753.6/28.3 1726.9/1794.3/38.6 1573.5 1618.8

6 2105.2/2198.1/50.6 2132.7/2221.9/43.5 2127.5/2213.8/44.6 2143.8/2206.3/40.8 1940.0 2031.7
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3.2.4. Note that the bound obtained with the bound LBLP and

the GA is tighter than the bound obtained with the GA plus the

LB1.

The best results obtained with the approaches compared in

this paper are achieved with the hybrid approach GA_MWFLP.

This hybrid algorithm obtained the minimum value of the

objective function Z in all instances tested. The algorithm

GA_GreedyExp obtains similar results in Instances 1 and 2, but

the results obtained in the rest of instances seem to be worse.

The hybrid approach GA_Greedy50000 obtains the worst

results among the heuristics tested. Note also that our

Table 5

t values obtained by a two-tailed t-test for the SLP instances tackled

p # GA_MWFLP–

GA_GreedyExp

GA_MWFLP–

GA_Greedy50000

GA_MWFLP–

GA [19]

1 0.0 0.0 0.0

2 0.0 �3.5y �2.8y

3 �4.85y �28.57y �17.63y

4 �2.06y �15.75y �12.48y

5 �0.98 �15.74y �12.74y

6 �1.21 �1.94 �1.90

y Values of t with 29 degrees of freedom which are significant at a = 0.05.

Fig. 6. (a) Distribution of nodes in Instance 5; (b) best solution found by the

GA_MWFLP algorithm in Instance 5; (c) best solution found by the GA-LB1
algorithm in Instance 5.

Table 6

Weights and capacities of the BTSs in Alcalá de Henares

Node # Weight

(Trx)

Capacity x-Coordinate

(UTM)

y-Coordinate

(UTM)

1 3 48 467,092 4,481,354

2 3 48 466,105 4,480,876

3 3 48 468,067 4,480,731

4 6 48 465,630 4,485,016

5 6 48 468,816 4,481,043

6 6 48 469,296 4,480,356

7 6 48 468,647 4,483,846

8 6 48 469,815 4,482,204

9 3 48 470,204 4,481,771

10 3 48 470,274 4,482,279

11 3 48 471,468 4,483,752

12 9 48 466,147 4,483,155

13 9 48 468,168 4,482,323

14 9 48 467,872 4,481,516

15 9 48 468,806 4,482,498

16 12 48 469,012 4,481,755

17 12 48 469,455 4,482,025

18 12 48 469,262 4,481,140

19 12 48 469,243 4,480,275

20 9 48 468,914 4,484,249

21 9 48 469,539 4,482,412

22 9 48 470,508 4,482,427

23 9 48 470,272 4,481,806

24 9 48 471,322 4,483,141

25 6 48 468,319 4,480,835

26 6 48 466,265 4,484,883

27 6 48 466,249 4,481,399

28 9 48 469,147 4,481,880

29 9 48 469,692 4,482,710

30 6 48 469,713 4,482,094

31 6 48 471,650 4,483,967

32 3 48 470,633 4,482,783

33 3 48 470,943 4,483,039
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approaches GA_MWFLP and GA_GreedyExp outperform the

results obtained by the GA proposed in [19]. In order to

statistically corroborate these results, Table 5 shows the results

of a t-test performed over the data obtained by the compared

algorithms. The t-test shows that the GA_MWFLP performs

statistically better than the rest of algorithms compared in

Instances 3–5. In the smallest Instances 1 and 2, and in Instance

6, GA_MWFLP and GA_GreedyExp perform in a similar way.

Both approaches outperform statistically the GA proposed in

[19]. Regarding the comparison between GA_MWFLP and

GA_Greedy50000 algorithm, it is easy to see that the

GA_MWFLP improves the performance of the GA_Greedy

approach in all Instances, and this improvement is statistically

significant in Instances 2–5.

The case of Instance 2 is interesting. Note that in this

instance, the LBLP is equal to the solution obtained by the

hybrid algorithms. This means that the solution obtained by the

linear relaxation of the TA is also a solution for the TA. Fig. 6

shows Instance 5 nodes distribution (Fig. 6(a)), the solution

obtained by the GA_MWFLP hybrid algorithm (Fig. 6(b)) and

the solution given by the LBLP (Fig. 6(c)). Note the differences

between Fig. 6(b) and (c) due to the capacity constraint of the

problem.

4.3. The SLP in a real case

We conclude the experiment part of this paper by showing

the resolution of a SLP in a real case: the SLP of in the wireless

network of Alcalá de Henares, Madrid, Spain. Alcalá de

Henares is a medium size city, with 180,000 citizens, sited on

the northeast of Madrid. In the last few years there have been a

massive growth of the wireless telephony use within the city,

and its 2G wireless network is now completely deployed,

having 33 BTS of different types for covering the city. Fig. 7

shows the situation of the BTSs in a map of the city. The

parameters of the different BTSs (Table 6) has been obtained

from the mobile network operators. The weights of the TA are

equivalent to the number of transceivers (Trx) of each BTS. All

the BTSs have the same maximum capacity if it is considered as

a switch. This table also provides the position of the BTSs in

universal transverse mercator (UTM) coordinates.

We have applied our best approach, the GA_MWFLP

algorithm to obtain the switches location. Note that, in this case,

the minimum number of switches to cover the network capacity

requirements is 5. Fig. 8 shows the solution found by our

algorithm, with a maximum cost of 26059.9 m. The numberical

values of this solution are shown in Table 7.

4.4. Applicability of the proposed algorithms in

telecommunication regulatory processes

In the last few years, important regulatory processes are

being carried out by the National Regulatory Authorities

(NRA) of several countries, in order to establish real

competence frameworks among the different mobile network

Fig. 7. BTSs locations in Alcalá de Henares (Madrid).

Table 7

Best solution obtained for the SLP problem in the wireless network of Alcalá de

Henares

Node serving as switch Assigned nodes

14 1, 2, 3, 13, 15, 25, 27

33 7, 10, 11, 20, 22, 24, 31, 32

26 4, 12

18 5, 6, 16, 19, 28

30 8, 9, 17, 21, 23, 29

We show the nodes which serves as switches and their assigned nodes.
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operators working in each national territory. To do that, the

NRAs request from the operators the so call cost-models

which identify all the networks peculiarities in order to

provide the final estimated cost for the services provided

(voice, GPRS, SMS, etc.) [32]. One of the most important

models is the so-called long run incremental cost (LRIC)

which is recommended for use by the European Commission

[33]. One of the critical points in this model is that it must

design the optimal network of and hypothetical operator

which would incorporate into the current mobile market of the

country under study. In this design, in the part known as

aggregation network, the network designer must select from

the whole set of BTSs all over the country, those that serve as

BSC, and it also must obtain the corresponding assignment of

the rest of the BTS to the selected BSCs. Note that this part is

the problem tackled in this paper. In order to give an

estimation of the importance of this problem, take into

account that the investment cost in BSC and BTS-BSC links

are about the 20% of the total investment cost of the network.

First versions of the algorithms presented in this paper have

been applied in the regulatory processes in Peru and Australia,

where we have worked together with the NRAs Opsitel and

ACCC [34], respectively.

5. Conclusions

In this paper we have presented several hybrid genetic

algorithms for solving the switch location problem (SLP) in a

wireless communication network. We have defined a model for

the problem, based on the capacitated p-median problem, and

following this model, we have constructed several hybrid

genetic approaches. All the heuristics proposed consist of a

conventional genetic algorithm for choosing which nodes of the

networks contains a switch, hybridized with local heuristics for

providing the associated objective function (solution of the

associated terminal assignment). The experiments carried out

have shown the good performance of the hybrid genetic

heuristics for solving the SLP. The heuristic developed in this

paper, and the model in which they are based, can also be

applied in different cost models for regulatory studies in

telecommunications.
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S. Salcedo-Sanz et al. / Applied Soft Computing 8 (2008) 1486–14971496



Author's personal copy
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