
Computer Networks 53 (2009) 1722–1736
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
Self-managed topologies in P2P networks q,qq

Luis Rodero-Merino a,*, Antonio Fernández Anta b, Luis López b, Vicent Cholvi c

a Telefónica I+D, Tecnologias Emergentes Gestion Redes y Servicios, C/Emilio Vargas 6, 28043 Madrid, Spain
b LADyR, GSyC, Universidad Rey Juan Carlos, Móstoles, Spain
c Universitat Jaume I, Castellón, Spain

a r t i c l e i n f o
Article history:
Available online 23 September 2008

Keywords:
Self-adaptation
Self-management
Autonomic communication
P2P
Resource location
1389-1286/$ - see front matter � 2008 Elsevier B.V
doi:10.1016/j.comnet.2008.09.006

q A preliminary version of this paper was presen
conference.
qq This research was supported in part by Comuni
S-0505/TIC/0285; Spanish MEC Grants TIN2005-091
06735-C02-01, TSI2006-07799 and TIN2008-03687
1B2007-44.

* Corresponding author. Tel.: +34 913373928; fax
E-mail addresses: rodero@tid.es (L. Rodero-Merin

Anta), llopez@gsyc.es (L. López), vcholvi@uji.es (V. C
a b s t r a c t

The problem of efficient resource location is an important open issue in P2P systems. This
paper introduces DANTE, a self-adapting P2P system that changes its peer links to form
topologies where resources are located in an efficient manner via random walks. Addition-
ally, this same self-adaptation capacity makes DANTE capable of reacting to events like
changes in the system load or attacks on well-connected nodes by adjusting the topology
to the new scenario. This adaptive behavior emerges as the global result of the individual
work of nodes, without the intervention of any central entity or the need for global knowl-
edge. Simulations show that this adaptation process makes the system scalable, resilient to
attacks, and tolerant to a high transitivity of peers. Simulations are also used to compare
this solution with other well-known self-adapting P2P system. From these results it can
be concluded that the topologies achieved by DANTE offer better performance.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction not present single points of failure. On the other hand, P2P
Peer-to-Peer (P2P) systems are bringing about a revolu-
tion in the way people develop and use network applica-
tions. The original client–server approach, where
participants (also called nodes or peers) have a well-defined
role as consumers or providers of resources, is being re-
placed by P2P architectures where each member can work
simultaneously as both a client and a server.

P2P systems have interesting properties. First, they are
inherently scalable, since all peers are susceptible of work-
ing as service providers. Second, they can be designed to
work without any central control, which makes them more
resilient to certain forms of attacks or node loss, as they do
. All rights reserved.

ted at the ISPA 2006

dad de Madrid Grant
98-C02-01, TIN2008-
; Bancaixa Grant P1-

: +34 913374272.
o), anto@gsyc.es (A.F.
holvi).
systems also present challenging problems which cannot
easily be solved with the current techniques. The most
important of these difficulties is probably the so-called
search problem, that is, the problem of efficiently locating
a given resource or service in a P2P network, which may
have an arbitrary structure.

Several solutions have been proposed to approach the
problem of resource location. In them, peers are connected
by virtual links forming an overlay network with a given
topology. In this context, a particular location mechanism
dictates how search messages are routed through the over-
lay network. Depending on the nature of the location
mechanism, P2P systems have traditionally been divided
into two main families [1,2]:

� Structured Systems [3,4,6]. These define an identifier
space where each resource has a particular and well-
defined id. The identifier space is partitioned in such a
way that each node is assigned an id subset. Each node
must know where all resources falling within its corre-
sponding subset are located. Finally, the topology of
the overlay network is carefully chosen so that search
messages can be directed to find resources in a few hops.

mailto:rodero@tid.es
mailto:anto@gsyc.es
mailto:llopez@gsyc.es
mailto:vcholvi@uji.es
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

1 A node’s degree is the number of neighbors that node has.
2 From Dynamic self-Adapting Network TopologiEs.

L. Rodero-Merino et al. / Computer Networks 53 (2009) 1722–1736 1723
� Unstructured Systems. In this case, there is no strict con-
trol over where each resource is located. Hence, non-
informed search mechanisms are required.

Structured systems are usually very efficient given that
they can locate resources in a small number of hops. More-
over, they do not produce false negatives (false negatives
are associated with searches that fail to locate a given re-
source despite its presence in the P2P system). However,
researchers have pointed out some limitations of struc-
tured systems [1,7]. For example, when there is a high
churn of peers, the communication overhead can have a
drastic effect on the network’s performance. Furthermore,
structured systems do not support keyword searches or
complex queries as easily as unstructured systems. These
drawbacks seem to make structured systems unsuitable
for certain real-world scenarios like massive file sharing.

Unstructured systems are better suited to situations
where there is a high rate of peers entering and leaving
the network. However, they require different solutions to
the problem of resource location. Two of the most popular
solutions are the use of flooding and the use of superpeers.
Flooding, used in the first versions of Gnutella [8], raises
concerns about its scalability [9]. On the other hand, over-
lay networks based on superpeers have a very rigid struc-
ture, where all the peers are connected to a small subset of
nodes.

Novel mechanisms have recently been proposed to
overcome the limitations displayed by these solutions
when it comes to solving the search problem. One of them
consists in using random walks to route search messages:
at each hop of the search message in the overlay network,
the next node of the walk is chosen uniformly at random
from among the current node’s neighbors. The same pro-
cess is repeated until the search reaches a peer that knows
the location of the desired resource. Seemingly, random
walks offer few guarantees for the search process, since it
is usually not possible to know in advance how many hops
are needed to find a resource. In addition, when a search
fails (after a given time has elapsed or a predefined number
of hops has been reached without finding the resource),
there is no way of knowing whether the resource is not
really on the network or if the result is a false negative.
However, despite these limitations, previous work [10,11]
has shown that random walks are a promising technique
to solve the search problem in unstructured P2P systems.
In this regard, it is important to notice that the overlay
topology has a strong influence on the efficiency of random
walks [12–14]. In consequence, some authors have pro-
posed combining random walks with the use of dynamic
topologies [14,7,15] (i.e. topologies that adapt to the load
conditions by trying to optimize the performance of ran-
dom walks). All these papers assume that each node is
aware of its neighbors’ resources. Observe that this is not
a strong condition as it can be easily implemented in real
networks.

For instance, Lv et al. [7] introduced a P2P system where
nodes avoid congestion by means of a flow control mecha-
nism that changes the topology, making messages traverse
nodes with higher capacities. To do so, every node period-
ically checks its load. When a node is overloaded, it redi-
rects its most active neighbor (the one sending most
queries) to some of its neighbors with spare capacity. Thus,
higher capacity nodes tend to have more connections and
hence manage more queries.

Similarly, in Gia [15] (which is an evolution of the pre-
vious proposal), queries are forwarded to high-capacity
nodes, which should be more capable of handling them.
An active flow control mechanism avoids overloading hot
spots: each node notifies its neighbors of the number of
queries they are allowed to send, which depends on the
node’s spare capacity. The topology is adapted by a mech-
anism based on the nodes’ level of satisfaction, which mea-
sures the distance between a node’s capacity and the sum
of its neighbors’ capacities, normalized by their degrees.1

This parameter determines whether or not each node will
adapt the topology, and the frequency of these adaptations.

Finally, Cooper [5] proposes a self-adapting system
where nodes have a degree proportional to the square-root
of the popularity of the resources held by it (the popularity
of a resource is the rate of queries for that resource over
the total amount of queries in the system). This goal seems
inspired by[11,20] where it is found that the resources rep-
lication strategy (amount of copies of each resource placed
in the network) that achieves a minimum average search
length is the one that, for each resource, places a number
of copies proportional to the square-root of the resource’s
popularity. Cooper finds that those topologies perform
optimally, in the sense that resources are found in the min-
imum average number of hops. We should note that Coo-
per does not assume that each node knows its neighbors’
resources, which makes his work difficult to compare with
other solutions like [14,7,15] or DANTE. Also, Cooper’s
work does not model nodes as entities with limited, and
possible heterogeneous, processing capacities and band-
widths. Hence, for example, it does not take into account
that nodes can become overloaded, neither does it avoid
situations where nodes with low capacity get a higher de-
gree (and so receive more searches) than other high-capac-
ity nodes, which are more able to handle that load.

Our Approach. In this paper we introduce DANTE,2 a
proposal for an unstructured P2P system with self-adapting
capabilities.

DANTE is inspired by the work by Guimerà et al. [13],
which shows that, to obtain the best performance from a
random walk, a P2P overlay topology must be either cen-
tralized (if the system is not overloaded) or random (other-
wise). Based on this idea, DANTE implements a
reconnection mechanism whose goal is to build the most
appropriate topology dynamically by adapting it to the
current network conditions. Hence, unlike previous sys-
tems, DANTE is capable of modifying the overlay topology
from a centralized to a completely random one, depending
on the network load. At the same time, DANTE avoids con-
gestion at the network nodes without the need for any
additional flow control mechanisms. This adaptation is
performed in a totally decentralized manner. Note that
even in the case where the topology that is built is central-

1724 L. Rodero-Merino et al. / Computer Networks 53 (2009) 1722–1736
ized, the system remains a pure P2P network where all
nodes have the same function (although some of them
are better connected). Due to this, and as our simulations
show, DANTE has the properties P2P systems are expected
to have, such as the capacity to handle a high churn of
peers and resilience to attacks.

This paper is organized as follows: First, in Section 2, we
present DANTE and the rationale behind it. Secondly, by
means of simulations, in Section 3 we show how the dy-
namic topologies built by DANTE provide significant bene-
fits in terms of scalability, robustness and churn resilience.
Finally, in Section 4 we draw appropriate conclusions.
2. DANTE, a new self-adapting P2P system

2.1. The rationale behind DANTE

In the work by Guimerà et al. [13], following an ap-
proach similar to the one proposed by Adamic et al. [12],
it is assumed that nodes own named resources. It is also as-
sumed that a particular node knows how to locate all its
own resources plus the resources of all its neighbors (all
nodes connected to the given one in the overlay). Hence,
the search process is performed by a walker message
which is routed among the overlay nodes following one
of a set of predefined schemes (random, shortest path,
etc.). A particular resource is found by the walker when
the message arrives at a node that knows the location of
the resource, that is, when the walker visits the node that
owns the desired resource or one of its neighbors (the
same assumption is made in other works that apply dy-
namic topologies, such as [7,15]). In this context, Guimerà
et al. characterize the topologies that minimize the average
search time when using a routing scheme based on ran-
dom walks. They find that when the system is not con-
gested (i.e. no node receives more searches than it can
process), the most efficient topology is a star-like structure,
where a small number of central peers are connected to
the rest of the network. The reason for this is intuitive: if
the topology is centralized, all searches are solved in just
one hop of the walker, which is not delayed by congestion.
In the same way they show that, when all nodes have the
same capacity and under high load conditions, the most
efficient topologies are random-like, where all nodes have a
similar number of overlay links and the traffic is uniformly
distributed. Additionally, they show that the transition of
efficient topologies from centralized to random-like for
increasing loads is sharp. Hence, they characterize the
most efficient topologies in terms of load. On the other
hand, they do not provide a mechanism for building such
topologies in a real network. Note that this is not a trivial
problem in P2P systems, where there is no global knowl-
edge available and there is no central coordinator to tell
each node which other peers it must connect to.

In a later work, Cholvi et al. [14] propose a reconnection
mechanism that allows P2P systems to self-adapt to load
conditions by converging to the topologies pointed out by
Guimerà. By this mechanism, each node periodically deci-
des which other peers it must connect to. This choice is
based on the ‘attractiveness’ of each peer. Roughly, the
attractiveness of a peer depends on its degree (the higher
the degree, the more attractive the peer is, as it knows more
about the resources in the network), provided that the peer
is not congested. If, however, the peer is overloaded, it is as-
signed the smallest possible attractiveness value.

By simulation, Cholvi et al. show that their adaptation
mechanism builds the topologies that were initially in-
tended. However, their proposal has some important
restrictions:

� They assume that each node has a global knowledge
about the state (degree and congestion) of all the other
members of the network. Clearly this is not true in many
real networks.

� In their simulations the authors assumed that searches
follow shortest paths, not random walks. Again, this
cannot be fulfilled in real P2P systems, as the shortest
path to the search destination is not known.

� Also, the networks used by Cholvi et al. for their exper-
iments were homogeneous, in the sense that all nodes
were identical. However, real world networks are
known to be heterogeneous, with nodes with different
processing capacities and bandwidths.

In [16] we presented the experimental results of a real
implementation of a P2P system based on Cholvi’s recon-
nection mechanism. This implementation differed in some
respects from Cholvi’s proposal, which made it closer to
real scenarios. First, it used random walks to route search
messages. Second, no global knowledge was available. In-
stead, the peers to connect to were chosen from a set of
candidates C. This set was built at each reconnection by a
special message that traversed the network following a
random walk. When the message Time-to-Live (TTL, mea-
sured in the number of hops) expired, the list of visited
nodes was sent back to the source node and became the
set C for the reconnection.

Fig. 1 shows the topologies obtained by this implemen-
tation under different loads. As intended by the adaptation
mechanism, with low loads the topology evolved to a cen-
tralized form, while under high loads the topology shifted
to a random-like one. Furthermore, with certain intermedi-
ate loads the topology had a ‘clustered’ form with some
well-connected, yet not central, nodes. The experiments
also confirmed that, as predicted by Guimerà, those topol-
ogies were indeed the ones that allowed the lowest aver-
age search times to be obtained under the corresponding
loads.

Nonetheless, we also became aware of some limitations
of the reconnection mechanism proposed in [16]:

� A peer is considered to be congested if the number of
searches received surpasses a certain fixed threshold.
However, it is difficult to set such a threshold with accu-
racy a priori.

� Whenever the threshold is reached, the attractiveness of
the node sinks to the minimum value. Due to this, all its
neighbors tend to disconnect from it. This leads to sharp
changes in the topology that have an impact on the net-
work performance. For certain loads, this effect even
prevents the topology from reaching a stable state.

Centralized Topology
Low Load

Clustered Topology
Medium Load

Random Topology
High Load

Fig. 1. Network topology adaptation.

L. Rodero-Merino et al. / Computer Networks 53 (2009) 1722–1736 1725
Additionally, the experiments carried out in [16] were
run with few nodes. Simulations with much bigger net-
works were necessary. We also realized that the system
had to be tested under unfavorable conditions, such as
attacks or high peer churns. Finally, it was necessary to
test the reconnection mechanism in heterogeneous
environments.

To address these issues, a new version of the DANTE P2P
system was created with a different reconnection mecha-
nism and then tested by extensive simulation.
2.2. DANTE’s reconnection mechanism

This section introduces DANTE’s reconnection mecha-
nism, which dictates how each node must manage its
connections.

Each node in DANTE handles a set of connections, which
are denoted as the native node’s connections. When a node
a points one of its native connections to another node b,
then that connection becomes one of b’s foreign connec-
tions. Thus a node can have both native and foreign con-
nections, each linking it with some other peer in the
network. Each connection is always native at one of its
edges and foreign at the other. This differentiation is only
meaningful for the reconnection process. Nodes can only
change their native connections, not their foreign ones.
But messages can travel through links in both directions
regardless whether they are foreign or native to the nodes
they are hooked onto.

DANTE’s reconnection mechanism is triggered periodi-
cally at each node to choose, from a set of candidates C,
which other peers that node must point its native connec-
tions toward. The reconnection mechanism tries to form
topologies that are as centralized as possible, but at the
same time prevents any node from becoming congested.

The reconnection mechanism computes the attractive-
ness Pi of each candidate peer i 2 C as follows:

Pi ¼ kci
i ; ð1Þ

where ki is the degree (number of neighbors) of peer i.
The ci value is computed taking into account both the

capacity and load of i:

ci ¼ 2� cinorm � ð1� tinorm Þ; ð2Þ

cinorm is the normalized processing capacity of node i where
the normalization is performed as follows. Let ci be the
capacity of node i and cmax ¼ maxi2Cfcig. Then,
cinorm ¼
ci

cmax
; ð3Þ

it follows that 0 < cinorm 6 1;8i, where a larger cinorm means
that node i is more attractive, since it has a greater capacity
to process searches.

tinorm represents the average time spent by recent
searches at node i (time in queue plus processing time),
after being normalized. The normalization is computed as
follows. Let ti be the mean search processing time of node
i, tmax ¼maxi2Cftig and tmin ¼ mini2Cftig. Then,

tinorm ¼
ti � tmin

tmax � tmin
: ð4Þ

It is straightforward to derive that 0 6 tinorm 6 18i, where a
lesser tinorm means that node i is more attractive, since it
takes less time for searches to be served.

Finally, once the Pi values are computed for all candi-
dates in C, each candidate i 2 C is assigned a probability
pi of being chosen, which is computed as

pi ¼
PiP
j2CPj

: ð5Þ

Thanks to this reconnection mechanism, the system be-
haves in an adaptive manner by changing its topology to
suit the load conditions. This behavior emerges as an effect
of the individual work of nodes.

2.3. Candidate sampling

The reconnection mechanism of DANTE depends on the
set of candidates C which the node can connect to. There
are several mechanisms that could be used to build this list
of candidates. For example, a gossiping-based service like
those presented in [17] could spread information about
nodes throughout the network. Another solution is to
make nodes keep a cache of other peers in the network.

DANTE implements a third solution. Whenever a node i
starts a new reconnection, it launches a Look-For-Node mes-
sage that, starting from node i, traverses the network fol-
lowing a random walk with a bounded TTL. When the TTL
expires, another message is sent to node i with the list of
peers traversed by the Look-For-Node message. This list be-
comes the set of candidates. This technique demands little
bandwidth and so has a small incidence on the network
load. Moreover, as Newman’s results [18] show, the set ob-
tained is a good sample of the overall network. Finally, with
high probability nodes with a high degree (potentially the
most interesting candidates, as they know more about the

1726 L. Rodero-Merino et al. / Computer Networks 53 (2009) 1722–1736
resources in the network) will be collected by the message,
because they are very likely to be visited by the random
walk [18]. This is the same sampling technique used in the
previous version of DANTE [16], as already discussed above.
2.4. Reconnection algorithm

To sum up, we present the reconnection process in algo-
rithmic form in Algorithm 1. Recall that the algorithm is
executed once the Look_for_Nodes message, that carries
the list of candidates, arrives back to the node running
the reconnection process.

Algorithm 1. Choose N new neighbors from set of candi-
dates C

1: Reconnection(C, degr, capac, times)
Table 1
Capacity and upload bandwidth distribution used in the simulations
//C: Set of candidates

//degr[]: Candidates degrees (ki)
//capac[]: Candidates capacities (ci)
//times[]: Time spent by searches at candi-

dates (ti)
2: if jCj 6 N then
3: return C
4: end if
5: tmax maxftimesg; t min minftimesg; cmax max
fcapacg
6: // Computing each candidate attractiveness

7: attrac½� 0// Attractiveness of nodes ðPiÞ
8: attracsum 0// Sum of all attractiveness

9: forall i 2 C do
10: cnorm capac½i�=cmax;
tnorm ðtimes½i� � tminÞ=ðt max � tminÞ
11: c 2� cnorm � ð1� tnormÞ; attrac½i� degr½i�bc
12: attracsum attrac sum þ attrac½i�
13: end for
14: // Choosing new neighbors

15: newNeigh ;// New neighbors set

16: while jnewNeighj < N do
17: // randðx; yÞ returns an uniform random value
z (x 6 z 6 y)
18: randomVal randð0; attrac sumÞ
19: count 0
20: for all i 2 C do
21: count countþ attrac½i�
22: if count P randomVal then
23: chosenNode i
24: break
25: end if
26: end for
27: C C � fchosenNodeg;
newNeigh newNeigh [fchosenNodeg
28: attracsum attracsum � attrac½chosenNode�
29: end while
30: return newNeigh
Percentage of nodes (%) Processing capacity ci Bandwidth bi

20 0.1 0.01
45 1 0.1
30 10 1
4.9 100 10
0.1 1000 100
3. Simulation results

This section shows the results of the simulations per-
formed to study different aspects of DANTE’s performance,
namely, scalability, tolerance to churn of peers and resil-
ience to attacks.
3.1. Simulation parameters

Each node handles 10 native connections. Reconnec-
tions are triggered every 30 seconds. Only five native con-
nections are changed at each reconnection and these
connections are chosen uniformly at random from among
the 10 native connections of the node. All experiments
start with a random topology.

The capacity of each node is set by two parameters:
bandwidth and processing capacity. Each node performs
tasks, like processing an incoming message or an internally
started process (e.g. the triggering of a new reconnection).
When performing some task, a node is said to be busy. Any
other task pending in the node is enqueued until the task
that is running has finished.

To compute the amount of time that a node is busy
serving some task, two different times are used: the pro-
cessing time tproc and the sending time tsend. The processing
time tproc depends on the type of task being processed. If
the task does not involve looking for a resource in the list
of known resources then tproc ¼ 1. Otherwise, tproc is pro-
portional to the number of resources checked, m, and the
node’s processing capacity ci, as tproc ¼ m

ci
. The sending time

tsend represents the time required by the task to send a
message. If no message is sent, then tsend ¼ 0. Otherwise,
tsend depends on the node’s bandwidth bi and the packet
size s, as tsend ¼ s

bi
. Finally, the time the node is busy is com-

puted as maxftproc; tsendg. This time is not tproc þ tsend as we
assume that the sending of messages and the processing of
tasks run in a pipeline.

Unless explicitly stated, in all the simulations the nodes’
capacities and bandwidths are assigned following the dis-
tribution depicted in Table 1. This distribution is derived
from the measured bandwidth distributions of the Gnutel-
la nodes reported in [19]. ci is expressed in resources pro-
cessed per microsecond, and bi is expressed in bits per
microsecond.

The load on the system is due to the resource lookups
initiated by the network peers. The time each node waits
between starting two searches is not fixed. Instead, after
initiating a search, the node computes the time until the
next lookup using an exponential distribution. The mean
of this distribution is set by a parameter called the time be-
tween searches, tbs. So, for example, if the network has
10;000 nodes and tbs is set to tbs ¼ 5 s, then, on average,
2000 searches are started during each second of the
simulation.

L. Rodero-Merino et al. / Computer Networks 53 (2009) 1722–1736 1727
In all experiments, each node holds 100 resources, all of
which are different. All resources are equally popular, i.e.
all resources have the same probability of being the re-
source looked for by each new search. Moreover, the repli-
cation of resources is uniform, since the number of copies
of each resource available in the system is the same for
all resources. This is one of the hardest setups for any re-
source location algorithm, as shown in [20]. In that work,
Cohen and Shenker show how uniform replication, along
with proportional-to-popularity replication, are the extreme
cases of a family of replication strategies of which they
both have the largest expected search length, and so the
poorest performance. This holds independently of the pop-
ularity distribution. We deem that replication strategies
outside this family, on the other hand, are unrealistic in
real-world networks.

Another work [11] from Lv et al. follows the line of [20].
In their experiments they compare different combinations
of strategies for resources popularity and replication. They
find out that the worst combination in terms of load due to
search messages is the uniform popularity with uniform
replication, the combination we implement. To get a high
success rate (as we intend) this combination produced a
much higher load on the system than other strategies as
searches required more hops to be solved. For example,
the Zip-f popularity distribution (that is known to be pres-
ent in many real world networks [9]) combined with the
proportional to popularity replication strategy (the most
‘natural’ replication), achieved much better results.
Searches required less hops to find resources and so the
load on the system was also lessened.

The TTL of the Look_for_Nodes message was set to 30
(we checked empirically that this value was enough to
get a good sampling of the network). The TTL of the search
messages, on the other hand, was set to 1000. With this
setting we aimed to ensure a high success rate (as we will
see in the next sections, we reached a success rate very
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

Virtual Tim

Clust
Cluster

Fig. 2. Adaptability and robustne
close to 100%) although this could introduce more load
due to search messages on DANTE.

3.2. Adaptability and robustness

The simulations presented in this section aim to test the
adaptive behavior of DANTE, that is, how the topology
evolves to form efficient configurations.

As the topologies built by DANTE are often centralized, it
could be argued that DANTE is vulnerable to attacks tar-
geted at well-connected nodes. Thus, in the simulations
run for this section we also check how DANTE’s self-adap-
tation mechanism reacts to such events. At minute 30,
when the network has already moved from the initial ran-
dom topology to a centralized one, a targeted attack is sim-
ulated: the 10 best-connected nodes (the central nodes)
leave the network. When this occurs, the searches waiting
in their queues are discarded. Additionally, their neighbors
change their connections by pointing them toward some
other peers which are chosen at random from the remain-
ing peers. Thirty minutes later, the attacked nodes are reac-
tivated. We will examine how DANTE reacts to such events.

The results are shown in Figs. 2–5. All of them show
how network behavior evolves in the first 90 min of virtual
time. The simulations presented here were run with
10;000 nodes, and replication r ¼ 0:01. Two different loads
were tested, tbs ¼ 5 and tbs ¼ 2:5 s.

First we study the effect of DANTE’s reconnection mech-
anism on the topology. As discussed before, the reconnec-
tion mechanism tries to form centralized topologies where
the most capable nodes are also the ones with a higher
number of connections.

To study the topology evolution we use the network
Clustering Coefficient [21] (CC) as a metric that shows the
degree of centralization of the network. Formally, it is de-
fined as follows. Let G ¼ ðV ; EÞ be an undirected graph
without loops nor multilinks, where vertices V represent
 50 60 70 80 90

e (Minutes)

ering Coefficient, tbs=5 secs
ing Coefficient, tbs=2.5 secs

ss – clustering coefficient.

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 D
eg

re
e

Virtual Time (Minutes)

Aver Deg, Capacity=1000
Aver Deg, Capacity=100

Aver Deg, Capacity=10
Aver Deg, Capacity=1

Aver Deg, Capacity=0.1

Fig. 3. Adaptability and robustness – average degree by node capacity.

 1

 2

 5

 10

 50

 100

 150

 0 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 N
um

be
r

of
 H

op
s

Virtual Time (Minutes)

Average Search Length, tbs=5 secs
Average Search Length, tbs=2.5 secs

Fig. 4. Adaptability and robustness – search length under attack.

1728 L. Rodero-Merino et al. / Computer Networks 53 (2009) 1722–1736
the nodes and edges E # V � V are the links between nodes
(if nodes i and j are connected, then ði; jÞ 2 E and ðj; iÞ 2 E).
Let Ni be the set of neighbors of node i 2 V , ki ¼ jNij. Then
the clustering coefficient of node i, CCi, is defined as the
number of connections among i’s neighbors, divided by
the maximum amount of possible links among them:

CCi ¼
jðNi � NiÞ \ Ej

kiðki � 1Þ ð6Þ

and the clustering coefficient of the network, CC, is given
by the expression:

CC ¼ 1
jV j

X
i2V

CCi: ð7Þ
It is straightforward to observe that 0 6 CC 6 1. The closer
CC is to 1, the more centralized the topology of the graph is.
Conversely, the closer CC is to 0, the more randomized the
topology is.

Fig. 2 shows how the clustering coefficient of the net-
work changes as the virtual time passes for the two loads
tested, tbs ¼ 5 and tbs ¼ 2:5 s. Initially, the CC value is
quite low as the network starts from a random topology.
But almost immediately, after a few reconnections, the
clustering coefficient grows until it reaches values very
close to 1. DANTE’s reconnection process has shifted the
topology to a centralized state, where all peers are con-
nected to (and only to) a small set of central peers. We note
that very similar topologies are achieved with both loads

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 S
ea

rc
h

T
im

e
(M

ill
is

ec
on

ds
)

Virtual Time (Minutes)

Average Search Time, tbs=5 secs
Average Search Time, tbs=2.5 secs

Fig. 5. Adaptability and robustness – search time under attack.

L. Rodero-Merino et al. / Computer Networks 53 (2009) 1722–1736 1729
during the first part of the simulation, although the great-
est load seems to make the network evolve slightly faster.
The reason is that a higher load makes the most capable
peers even more attractive to the reconnection process as
compared with the weaker node.

Later, when the attack is performed at minute 30 on all
the central nodes, the remaining peers redirect their con-
nections randomly so a random topology appears again.
From that moment on, nodes will try to connect to the
remaining peers with a higher capacity (nodes in the
fourth row in Table 1). The topology does not reach a
star-like form again, as there are no peers with enough
capacity to become central nodes. Yet, highly connected
nodes (hubs) appear, so the clustering coefficient grows
again in a few minutes. Also, we can see that the topology
built after the attack is more centralized for the lesser load.
This is because the adaptation process takes into account
the saturation at the nodes. With tbs ¼ 2:5, even the most
capable of the remaining nodes cannot handle as many
connections as with tbs ¼ 5. Thus, the resulting topology
is less centralized as those nodes will have fewer links.

Finally, when the attacked nodes are back at minute 60,
the network changes to a star-like topology again. To form
that topology, nodes disconnect from the present hubs and
point their native connections to the just arrived peers. Be-
cause of this, we observe that the clustering coefficient is
diminished as the network gets more ‘randomized’ due
to these changes, although this happens for a small range
of time. Almost immediately the CC raises again until a va-
lue close to 1. Here, we also see how the adaptive process
of DANTE has a very desirable property: it always tries to
adapt so as to achieve the best possible topology using
the most capable nodes available at any time.

We have stated so far that the most capable nodes are
the ones to get the highest degrees. Fig. 3 confirms this.
It shows, for the experiment with tbs ¼ 5 s, the average de-
gree of nodes grouped by their processing capacities, and
how this average degree changes as the virtual time passes.
We see that already after the first reconnections (results at
minute 1) the nodes with processing capacities 1000 and
100 get more links that the rest of peers. After a few recon-
nections more, the nodes with the greatest capacity get an
average degree very close to the maximum number of con-
nections possible (i.e. the size of the network), while the
other peers only keep their native connections. This means
that the highest capacity nodes are connected to all the
other peers in the system, so they have become the central
nodes of the star-like topology. Immediately after the cen-
tral nodes are attacked at minute 30, the nodes with capac-
ity 100 quickly recollect again many links, in some way
‘replacing’ the central nodes and becoming hubs of the sys-
tem. However, they are not able to handle as many connec-
tions as the peers with capacity 1000. Also note that the
weakest nodes keep having the minimum degree. Finally,
when the most powerful nodes are back at minute 60, they
soon get many connections until they become central
nodes once more.

To study the topology performance we focus on the
search results. The average search length is the average
number of hops performed by a random walk to find a re-
source. When the topology is centralized, the average
search length is 1 (all search messages go to the central
nodes, which can reply to all queries since they know all
the resources in the system). Moreover, the less centralized
the topology is, the longer the search length will be. The
average search time, on the other hand, allows us to study
how topology affects network efficiency. As expected, our
results show that the more centralized the network is,
the less time is required by the searches.

Fig. 4 shows how, during the first minutes of the simu-
lation, the average search length decreases sharply after a
few reconnections, until it reaches a value close to 1 as
the network moves to a star-like topology. At minute 30,
because of the attack on the central nodes, the network

1730 L. Rodero-Merino et al. / Computer Networks 53 (2009) 1722–1736
moves again to a random topology. Due to this, searches
again require many hops to find resources. As new recon-
nections are performed and hubs appear the average
search length is decreased once more. But the new topol-
ogy is not centralized, so it can not be as low as before. This
only happens when the attacked nodes return to the net-
work and DANTE builds again a centralized topology. Also
we observe that between minutes 30 and 60 the length of
searches is lesser for tbs ¼ 5 s than for tbs ¼ 2:5 s. This
agrees with Fig. 2, that shows how the topology achieved
with tbs ¼ 5 during that time interval is more centralized
that the one built with tbs ¼ 2:5.

In Fig. 5 we can see the effect of the attack on the aver-
age search time. After the attack this time is increased to
values close to those obtained at the beginning of the
experiment. This is to be expected, since the topology after
the attack is again random. Then, as nodes change their
connections, the topology is adapted to a clustered form,
thus lowering the average search time to lower values. Fi-
nally, when the 10 nodes attacked are back, the search
times gradually return to the values prior to the attack,
as the system adapts itself to form a centralized topology
again.

From Fig. 5 it seems straightforward to conclude that a
more centralized topology achieves better performance,
which confirms the analysis of Guimerà that inspired
DANTE. It is important to note, however, that this is also
achieved because DANTE’s reconnection mechanism
avoids congestion on peers, so no node gets more connec-
tions that it can handle. To accomplish both this and the
goal of achieving centralized topologies, DANTE ensures
that the nodes with the greatest capacities are also the
ones that get the highest number of neighbors.

The proportion of discarded searches (searches in the
queues of the attacked nodes) is around 0.005% of the total
in both experiments. The proportion of failed searches is
less than 0.04%. Note that a certain number of failed
searches could not be avoided in these simulations, as each
resource was held by only one node, and the attacked peers
were not present for 30 min. Therefore, searches run dur-
ing that interval to look for the resources in those nodes
could not finish successfully.

From the experiments outlined here we conclude that
DANTE succeeds in building efficient topologies where
searches require little time to be solved, while also avoid-
ing congestion at well-connected nodes. DANTE is also able
to take advantage not only of the capabilities of the nodes
already present but also of those that arrive at the system,
by always trying to build topologies that offer better per-
formance (that is, it does not get ‘stalled’).

We can also infer that the effects of attacks on DANTE
depend on factors like which nodes are attacked or the load
on the network. Yet, even in a scenario where nodes that
have become central are all successfully attacked at the
same time and no other nodes of the same capacity remain
in the system, the network adapts so as to reach another
efficient state again. The system is never, and can never be,
fully shut down by only attacking a subset of its peers (how-
ever big this subset is), because it is not dependent on any par-
ticular group of nodes. It is true nonetheless that under
some topologies a well-directed attack could partition
the network, specially topologies with a low conductance
[22]. Intuitively, these are topologies where big regions of
the network are connected by few nodes. However, due
to the randomness applied by the reconnection heuristic,
DANTE tends to form topologies where such regions do
not appear as nodes can potentially connect to any other
node in the network. This is reinforced by the fact that
nodes in DANTE, when some neighbor is attacked, redirect
the corresponding connection to some other peer chosen at
random. A way to implement this could be to use a cache
of known peers, from the results of the last Look_for_Node
messages.

3.3. Scalability

An important concern when working with P2P systems
is scalability. The system should be capable of managing
thousands of nodes, while keeping the performance within
acceptable levels. In this section we present the results of
simulations that show how, in DANTE, overall performance
can even increase when new nodes are added.

The simulations in this section were run with five dif-
ferent network sizes: 2000, 4000, 6000, 8000, and 10,000
nodes. Nodes’ capacities are set using the proportions de-
picted in Table 1. Only results related to searches started
between minutes 31 and 60 (inclusive) of virtual time
are used. When all searches that started before minute
61 have finished the simulation is stopped. Two replication
rates are used, r ¼ 0:05 and r ¼ 0:1, each with two differ-
ent loads tbs ¼ 5 and tbs ¼ 2:5 s.

On observing Fig. 6 we detect a somewhat surprising ef-
fect: the average search time decreases as the network
grows. This is due to the fact that, given the proportions
in Table 1, the bigger the network is, the more nodes with
high capacities are added to the system. This leads to bet-
ter performance, as those nodes can manage many connec-
tions and hence they allow forming topologies where the
average number of hops needed to solve searches is de-
creased. This is shown in Fig. 7.

We thus see that DANTE is able to manage large net-
work sizes properly, due to its ability to take advantage
of the high-capacity nodes present in the network.

3.4. Performance under churn

Peers in real networks can enter and leave the network
at a high frequency and, therefore, the system must be able
to manage a high transitivity of peers. In this section we
will study how DANTE behaves under different churns of
peers.

In all the simulations run for this section, the probabil-
ity of each node being active at start time is 0.5. For each
active node calculations are performed to determine how
long they will remain active before leaving the network.
This time is computed using an exponential distribution
with a certain average value, set as a parameter of the
experiment called the average active time. The lower that
value is, the higher the churn of peers will be. When the
time to be active expires for a particular node, then that
node is deactivated: it discards all searches in its queue
and closes its connections with all its neighbors. After

 0

 100

 200

 300

 400

 500

 600

 700

 2000 4000 6000 8000 10000

A
ve

ra
ge

 S
ea

rc
h

T
im

e
(M

ill
is

ec
on

ds
)

Network Size

Average Search Time, tbs=5 secs; r=0.1
Average Search Time, tbs=5 secs; r=0.05

Average Search Time, tbs=2.5; r=0.1
Average Search Time, tbs=2.5 secs; r=0.05

Fig. 6. Scalability – search time as network grows.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2000 4000 6000 8000 10000

A
ve

ra
ge

 N
um

be
r

of
 H

op
s

Network Size

Average Search Length, tbs=5 secs; r=0.1
Average Search Length, tbs=5 secs; r=0.05
Average Search Length, tbs=2.5 secs; r=0.1

Average Search Length, tbs=2.5 secs; r=0.05

Fig. 7. Scalability – search length as network grows.

L. Rodero-Merino et al. / Computer Networks 53 (2009) 1722–1736 1731
0.5 s of virtual time, the node is reactivated and reenters
the network, connecting its native connections to 10 nodes
chosen randomly from among the rest of the active peers.
The time it will remain active is computed again. If any
node has a native connection pointing toward a peer that
leaves the network, it will redirect that connection to some
other active peer chosen at random. This works as a ‘provi-
sional’ solution until a new reconnection is run. This set-
ting simulates a scenario with nodes entering and leaving
the network simultaneously (a similar approach is used
in [15]).

The following values were used for the average active
time parameter: 60, 300, 600, 3000, and 6000 s. Two differ-
ent replication rates r were applied: r ¼ 0:05 and r ¼ 0:1.
All the simulations run for this section used a network size
of 10,000 nodes. Only searches started between minutes
31 and 60 (inclusive) were taken into account in order to
compute the final results.

The first result we study, shown in Fig. 8, is the propor-
tion of searches that were successful, failed (the search mes-
sage TTL expired before the resource was found) or
discarded (a search is discarded if it is in the queue of a
node that leaves the network). The load was set to
tbs ¼ 5 s for these experiments. As Fig. 8 shows, for the
maximum churn, when the average active time is set to
60 s, the sum of failed and discarded searches is about
4.6% of all searches for r ¼ 0:1, and 6.2% for r ¼ 0:05. We
deem this to be a small impact for such a high transitivity.

 0.001

 0.01

 0.1

 1

 10

 100

60 300 600 3000 6000

S
ea

rc
he

s
%

Average Active Time (Seconds)

Successful Searches; r=0.1
Successful Searches; r=0.05

Failed Searches; r=0.1
Failed Searches; r=0.05

Discarded Searches; r=0.1
Discarded Searches; r=0.05

Fig. 8. Churn – searches count (in%) under churn.

1732 L. Rodero-Merino et al. / Computer Networks 53 (2009) 1722–1736
Moreover, with a small increase in the stability of nodes so
that their average active time is 300 s, the number of failed
and discarded searches is drastically reduced to less than
0.2% of the total, a proportion that goes on decreasing as
the average active time grows.

Next, we comment on how churn affects the average
length of searches. A high transitivity of peers prevents
the network from achieving centralized topologies since,
in our experiments, all nodes have the same average active
time regardless of their capacity (and therefore their
attractiveness). Thus, nodes that have become well-con-
nected will leave the network over and over again. It is rea-
sonable to think that in real networks some of the most
powerful nodes will tend to be more stable, so centralized
 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

60 300 600 30

A
ve

ra
ge

 N
um

be
r

of
 H

op
s

Average Active

Average Search Le
Average Search Len

Average Search Len
Average Search Leng

Fig. 9. Churn – search le
topologies can be built (sometimes nodes might join the
network precisely for that purpose, as for example the
superpeers in the eDonkey [23] network). However, we
have chosen not to make such an assumption in order to
test DANTE in a more difficult scenario.

As we can see in Fig. 9, the higher the churn is, the less
centralized the topology achieved by DANTE will be. But
even for the highest transitivity of nodes, DANTE is able to
form topologies with nodes very well connected, although
eventually these peers leave the system thus forcing the
rest of the nodes to adapt the topology. In addition, we
can see that increasing the churn of peers has little effect
on the search length for a wide range of values. We have
to reach very small values of the average active time to
00 6000

Time (Seconds)

ngth, tbs=5 secs; r=0.1
gth, tbs=5 secs; r=0.05

gth, tbs=2.5 secs; r=0.1
th, tbs=2.5 secs; r=0.05

ngth under churn.

 40

 60

 80

 100

 200

 400

 600

 800

 1000

 2000

60 300 600 3000 6000

A
ve

ra
ge

 S
ea

rc
h

T
im

e
(M

ill
is

ec
on

ds
)

Average Active Time (Seconds)

Average Search Time, tbs=5 secs; r=0.1
Average Search Time, tbs=5 secs; r=0.05

Average Search Time, tbs=2.5 secs; r=0.1
Average Search Time, tbs=2.5 secs; r=0.05

Fig. 10. Churn – search time under churn.

L. Rodero-Merino et al. / Computer Networks 53 (2009) 1722–1736 1733
see a (relatively) strong increase in the search length. This is
true for the two loads tested, tbs ¼ 2:5 s and tbs ¼ 5 s.

Finally, in Fig. 10 we can observe the impact of the tran-
sitivity of nodes on the average search time. It shows the
results of the same experiments used for Fig. 9, but this
time referring to the average duration of searches. For
low churns, the search time behaves in a similar way to
the search length, with a smooth growth until a very low
average active time is reached. It is only at this point that
a sharp increase in the search duration can be seen. Note
that this growth is not linear with the changes in the aver-
age search length. This is due to the fact that small incre-
ments in the search length have a high impact on search
times, which is a problem that cannot be avoided. The rea-
son is that, as searches follow a pure random walk, a higher
search length implies that low capacity nodes will be tra-
versed more frequently by search messages. In turn, this
makes searches to spend more time on the system before
being solved. However, DANTE succeeds in building topol-
ogies with well-connected nodes that keep the search
length bounded. Thanks to this, only very high churns
can effectively raise the average search duration.

From the results shown in this section, we can infer that
only a high transitivity of peers (regardless of their capac-
ity) can have an impact on DANTE’s performance, although
that impact is limited. DANTE is able to form close-to-cen-
tralized topologies that keep the average search length and
duration bounded, even when the system has little
stability.

3.5. Comparing DANTE and Gia

As explained in Section 1, Gia is another proposal for a
P2P system that uses an adaptation mechanism to improve
the efficiency of searches. In [15] the authors of Gia carried
out several simulations that show how self-adapting net-
works can offer better performance than other solutions
(like flooding) in a variety of scenarios. Thus, instead of
repeating those same simulations with DANTE, we consid-
ered it more interesting to compare Gia and DANTE. In or-
der to do so, we developed a Gia simulator that
implements the mechanisms described in [15] that consti-
tute the basis of their system: a flow control system to
avoid overloading nodes, a biased random walk search
mechanism, and a topology adaptation protocol.

It is important to note that, although both Gia and
DANTE implement a topology adaptation mechanism, they
are in fact different systems. For example, DANTE does not
use any flow control technique to avoid overloading nodes;
instead, its reconnection mechanism reduces the number
of links to congested peers. But the key difference is that
DANTE actively seeks to form centralized topologies, an
approach that differs from Gia. As commented in Section
1, nodes in Gia use a magnitude called the level of satisfac-
tion, which basically measures the difference between the
capacity of the node and the capacity that its neighbors de-
vote to it. Gia nodes seek to balance their level of satisfac-
tion and, as a result, high-capacity nodes tend to have
more connections than the rest, thus forming topologies
where the search length is kept low. The DANTE approach,
on the other hand, is different. Its main purpose is to form
topologies that are as centralized as possible and it pursues
this objective almost explicitly by means of its definition of
attractiveness (see Section 2.2). The goal of the experi-
ments in this section is to compare the two adaptation
techniques. As we will see, DANTE achieves better perfor-
mance because it is able to form more efficient topologies.

Simulations were run with 1000 nodes, with a replica-
tion r ¼ 0:1. As usual, nodes capacities and bandwidth
were set following the distribution shown in Table 1. Only
searches that started between minutes 31 and 60 were ta-
ken into account. As in the previous experiments, the load
in each experiment was generated by the resource lookups
started by the peers. This load was set, as before, by the
time between searches (tbs) parameter. Six experiments
were run for each proposal, each one with a different tbs.

1734 L. Rodero-Merino et al. / Computer Networks 53 (2009) 1722–1736
In Fig. 11 we plot the average search times for the dif-
ferent loads on both systems. DANTE seems to perform
better than Gia for all loads. Additionally, beyond a certain
point, Gia search times start to grow quickly with the sys-
tem load, while DANTE is able to keep search times low for
the same loads. Fig. 12 helps us to understand the reason
for DANTE’s better behavior: searches in Gia need a far
greater number of hops to find a certain resource (about
160) than in DANTE (about 7). The reason for this is that,
although the topology in DANTE is not totally centralized
(as there are not enough high-capacity nodes), it still main-
tains a clustered form where a few nodes are well con-
nected and hence allows queries to be completed in a
 0

 500

 1000

 1500

 2000

 2500

 3000

 10 15 30 60

A
ve

ra
ge

 S
ea

rc
h

T
im

e
(M

ill
is

ec
on

ds
)

Time Between S

Average Se
Averag

Fig. 11. Gia and DAN

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 15 30 60

A
ve

ra
ge

 N
um

be
r

of
 H

op
s

Time Between S

Average Sea
Average

Fig. 12. Gia and DANT
few hops. Gia, on the other hand, does not form such a
topology, as this is not its goal. In Gia each node tries to
get a set of neighbors with a sum of spare capacities that
matches its own. That is, in a way it aims to ‘get’ from their
neighbors as much capacity as they devote to them. Be-
cause of this, Gia’s reconnection mechanism forms topolo-
gies much more randomized than DANTE even for low
loads. This forces searches to perform more hops to find re-
sources, which has an important impact on the system’s
performance.

All searches were successfully completed in DANTE. Gia,
on the other hand, presented a certain proportion of failed
searches (between 1.5% and 2%) in all experiments.
 90 120

earches (Seconds)

arch Time, DANTE
e Search Time, GIA

TE search time.

 90 120

earches (Seconds)

rch Length, DANTE
Search Length, GIA

E search length.

L. Rodero-Merino et al. / Computer Networks 53 (2009) 1722–1736 1735
Thus, we can conclude that the DANTE approach can
lead to more efficient topologies, where searches are
solved in fewer hops and less time.

4. Conclusions

P2P systems are a promising paradigm, yet they de-
mand innovative solutions to new problems, like decen-
tralized resource location. With DANTE we propose a
self-adapting mechanism that forces the network to
change its topology with the aim of achieving an efficient
configuration that depends on the system load and the
peer capacities. The results obtained with DANTE and pre-
sented in this article seem promising. However, much
work remains to be done in order to improve the perfor-
mance of these techniques.

Future work. There are some aspects of DANTE that we
consider worthy of further exploration, for example, other
ways to sample the set of candidate nodes C. It could also
be interesting to study heuristics to decide when to trigger
the reconnection mechanism: if the network has reached a
stable state, maybe is not worth running new reconnec-
tions until some event such as an attack occurs. Another
line to study is how to tune the TTL value to optimize
the performance. Finally, new reconnection heuristics
could be studied and developed.

References

[1] S. Androutsellis-Theotokis, D. Spinellis, A survey of peer-to-peer
content distribution technologies, ACM Computing Surveys 36 (4)
(2004) 335–371.

[2] J. Risson, T. Moors, Survey or research towards robust peer-to-peer
networks: search methods, Computer Networks 50 (17) (2006)
3485–3521.

[3] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, J.D.
Kubiatowicz, Tapestry: a global-scale overlay for service
deployment, IEEE Journal on Selected Areas in Communications 22
(2004) 41–53.

[4] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan, Chord:
a scalable peer-to-peer lookup service for internet applications, in:
Proceedings of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications
(SIGCOMM 2001), San Diego, CA, United States, 2001, pp. 149–160.

[5] B.F. Cooper, An optimal overlay for routing peer-to-peer searches, in:
Lecture Notes in Computer Science, Proceedings of the ACM/IFIP/
USENIX 6th International Middleware Conference, vol. 3790,
Springer-Verlag, Grenoble, France, 2004, pp. 89–101.

[6] A.I.T. Rowstron, P. Druschel, Pastry: scalable, decentralized object
location, and routing for large-scale peer-to-peer systems, in:
Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms, Heidelberg, Germany, 2001, pp.
329–350.

[7] Q. Lv, S. Ratnasamy, S. Shenker, Can heterogeneity make Gnutella
scalable? in: Revised Papers from the First International Workshop on
Peer-to-Peer Systems, Cambridge, United States, 2002, pp. 94–103.

[8] The gnutella website. <http://www.gnutella.com>.
[9] K. Sripanidkulchai, The popularity of gnutella queries and its

implications on scalability, 2001, in O’Reilly’s P2P Open
Conference. <http://www.openp2p.com>.

[10] G.H.L. Fletcher, H.A. Sheth, K. Borner, Unstructured peer-to-peer
networks: Topological properties and search performance, in:
Lecture Notes in Computer Science (Proceedings of the Third
International Workshop on Agents and Peer-to-Peer Computing),
vol. 3601, Springer-Verlag, New York, New York, United States, 2004,
pp. 14–27.

[11] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, Search and replication in
unstructured peer-to-peer networks, in: Proceedings of the 16th
International Conference on Supercomputing, New York, New York,
United States, 2005, pp. 84–95.

[12] L.A. Adamic, B.A. Huberman, R.M. Lukose, A.R. Puniyani, Search
in power law networks, Physical Review E 64 (2001) 46135–
46143.

[13] R. Guimerà, A. Díaz-Guilera, F. Vega-Redondo, A. Cabrales, A. Arenas,
Optimal network topologies for local search with congestion,
Physical Review Letters 89 (2002) 248701.1–248701.4.

[14] V. Cholvi, V. Laderas, L. López, A. Fernández, Self-adapting network
topologies in congested scenarios, Physical Review E 71 (3) (2005)
035103–103 5103-4.

[15] Y. Chawathe, S. Ratnasamy, N. Lanham, S. Shenker, Making Gnutella-
like P2P systems scalable, in: Proceedings of the 2003 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM 2003), Karlsruhe, Germany,
2003, pp. 407–418.

[16] L. Rodero-Merino, L. López, A. Fernández, V. Cholvi, Dante: a self-
adapting peer-to-peer system, in: Lecture Notes in Computer
Science (Proceedings of AP2PC 2006, to be published), Springer-
Verlag, 2006.

[17] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, M. van Steen, The peer
sampling service: experimental evaluation of unstructured gossip-
based implementations, Lecture Notes in Computer Science
(Proceedings of Middleware 2004), vol. 3231, Springer-Verlag,
2004, pp. 79–98.

[18] M.E.J. Newman, A measure of betweenness centrality based on
random walks, Social Networks 27 (2005) 39–54.

[19] S. Saroiu, P.K. Gummadi, S.D. Gribble, A measurement study of peer-
to-peer file sharing systems, in: Proceedings of SPIE (Proceedings of
Multimedia Computing and Networking 2002, MMCN’02), vol. 4673,
2002, pp. 156–170.

[20] E. Cohen, S. Shenker, Replication strategies in unstructured peer-to-
peer networks, in: Proceedings of the 2002 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM 2002), Pittsburgh,
Pennsylvania, United States, 2002, pp. 177–190.

[21] S.H. Strogatz, D.J. Watts, Collective dynamics of small-world
networks, in: Nature, vol. 393, 1998, pp. 409–410.

[22] R. Kannan, S. Vempala, A. Vetta, On clusterings: good, bad and
spectral, in: Journal of the ACM, vol. 51, 2004, pp. 497–515.

[23] The eDonkey website <http://www.edonkey2000.com>.

Luis Rodero-Merino is a Junior Researcher at
Telefonica I+D in Madrid, Spain, since 2008.
He graduated in Computer Science at Valla-
dolid University, and received his PhD degree
in Computer Science at Universidad Rey Juan
Carlos in 2007, where he also worked as an
Assistant Professor before joining Telefonica
I+D. Previously he had worked in the Research
and Development area of Ericsson Spain,
where he developed services for fixed and
mobile telephone networks. His research
interests include computer networks, distrib-

uted systems, P2P systems and grid computing, in particular the study of
overlay-networks based solutions and SLA protection.
Antonio Fernandez Anta is a Professor at the
Universidad Rey Juan Carlos in Madrid, where
he has been on the faculty since 1998. Previ-
ously, he was on the faculty of the Universi-
dad Politecnica de Madrid. He graduated in
Computer Science from the Universidad
Politecnica de Madrid in 1991. He got a PhD in
Computer Science from the University of
Southwestern Louisiana in 1994 and was a
postdoc at the Massachusetts Institute of
Technology from 1995 to 1997. He is cur-
rently Senior Member of IEEE and ACM.

http://www.gnutella.com
http://www.openp2p.com
http://www.edonkey2000.com

1736 L. Rodero-Merino et al. / Computer Networks 53 (2009) 1722–1736
Luis Lopez is an Assistant Professor at Uni-
versidad Rey Juan Carlos in Madrid. His cur-
rent research work is concentrated on the
applications of novel mathematical para-
digms, like Game Theory or Complex Systems
Theory, into the field of computer communi-
cations. He has coauthored more than 40
research papers in different scientific journals
and conference proceedings within this topic.
He obtained a Telecommunication Engineer-
ing degree at Universidad Politecnica de
Madrid and at ENST – Telecom Paris in 1999.

He also posses a PhD degree in Computer Science by Universidad Rey Juan
Carlos since 2003.
Vicent Cholvi graduated in Physics from the
University of Valencia, Spain and received his
doctorate in Computer Science in 1994 from
the Polytechnic University of Valencia. In
1995, he joined the Jaume I University in
Castellon, Spain where he is currently an
Associate Professor. His interests are in dis-
tributed and communication systems.

	Self-managed topologies in P2P networks
	Introduction
	DANTE, a new self-adapting P2P system
	The rationale behind DANTE
	DANTE’s reconnection mechanism
	Candidate sampling
	Reconnection algorithm

	Simulation results
	Simulation parameters
	Adaptability and robustness
	Scalability
	Performance under churn
	Comparing DANTE and Gia

	Conclusions
	References

