
Biographical SketchAntonio Fern�andez (Anta) graduated from the Universidad Polit�ecnica de Madrid withthe degree of Diplomado en Inform�atica in March 1988 and with the degree of Licenciadoen Inform�atica in July 1991. In Fall of 1991 he joined the Ph.D. program in ComputerScience at the University of Southwestern Louisiana and was supported by a FulbrightScholarship. In Fall 1992 he obtained the Master of Science degree in Computer Science.His professional experience includes positions as systemmanager at the Departamentode Ingenier��a Telem�atica of the Universidad Polit�ecnica de Madrid for nine months, as anassistant professor for 20 months, and as an associate professor for a further 20 monthsat the Departamento de Arquitectura y Tecnolog��a de Computadores of the UniversidadPolit�ecnica de Madrid. He was recently awarded a post-doctoral research grant by theSpanish Ministry of Education and Science for the year 1995.

109

AbstractThis dissertation proposes the cartesian product operation for graphs as a unifying frame-work for the study of interconnection networks. In this research, we concentrate onhomogeneous product networks and generate a large set of important general resultswhich yield the characteristics of the product network from those of its factor network.From these characteristics, a network can be evaluated and di�erent networks can bemeaningfully compared.The results of this study are grouped in four main areas. First, we obtain structuralproperties of homogeneous product networks. We have compiled results on the diame-ter, vertex degree, connectivity, and partitionability of these networks. Then, we haveaddressed the study of other properties and derived results on the bisection width andcrossing number. To generate these results we introduce a new structural property of agraph, the maximal congestion, which seems to be interesting for future research.Second, we have obtained simple but powerful results on embeddings between homo-geneous product networks. These results allow to transfer the computational power ofone network to the other by emulation.Third, we have developed algorithms that can be implemented in any homogeneousproduct network without variation. These algorithms cover several important problems:sorting, summation, matrix multiplication, and minimum-weight spanning-tree �nding.Some of them can be readily modi�ed to solve many other problems.Finally, we have studied the VLSI layout complexity of homogeneous product net-works, obtaining lower bounds on the area and wire length they require and presentingmethods to produce optimal-area layouts.We have applied these results to several instances of homogeneous product networks,showing how simply the results can be used to evaluate a network. Then, we haveconcentrated in the study of three of them: the product of complete binary trees, shu�e-exchange graphs, and de Bruijn graphs. These three homogeneous product networkshave been shown to be very powerful and interesting candidates for being used as inter-connection networks. 108

APPENDIX 107In the rest of the proof we �rst show how to embed a (r(h� 3) + 1)-level tree in the�rst graph whose leaves are the leaves of PTr(2h�2 � 1). Then, we show how to embed a(3r�b r2c)-level tree in each copy of PTr(7) so that the root of the tree is the root of thecopy. The combination of both embeddings to PTr(N) yields the desired embedding.We �rst recall from Theorem 7.4 that PTr(N) has a subgraph isomorphic to the(r(h�1)+1)-level tree. By construction, the leaves of this tree are also leaves of PTr(N).The direct application of this theorem to PTr(2h�2 � 1) allows to obtain a subgraph ofthis graph isomorphic to the (r(h� 3) + 1)-level tree and whose leaves are the leaves ofPTr(2h�2 � 1).Corollary A.1 shows how to embed T (23r�b r2 c�1) with congestion 3 and dilation 3 intoeach copy of PTr(7) so that the root of the tree is the root of the copy. Combining thisresult with the previous one we have obtained an embedding of the (3r�b r2c+r(h�3)) =(rh� b r2c)-level complete binary tree in PTr(N) with dilation 3 and congestion 3.

APPENDIX 106has label x = xk:::x1, where xi = 1 for i = 1; :::; k, and the edges incident to the root areedges of PTk(7).Now consider only the roots of the embedded trees and reconnect them along dimen-sions k+1 and k+2. The graph so obtained contains the nodes of PTk+2(7) of the formx = xk+2xk+1xk:::x1, where xi = 1 for i = 1; :::; k, and is isomorphic to PT2(7).Each node in the above graph is the root of an embedded complete binary tree. Then,considering again the whole graph, we have obtained an embedding of TT (23k� k�12 �1; 2; 7) into PTk+2(7), where the PT2(7) subgraph and the �rst two levels of the trees areembedded with dilation 1 and congestion 1. Since the embedding de�ned in Lemma A.1only changes this part of the TT graph, it can be applied here to obtain an embeddingof the (3k � k�12 + 5) = (3(k + 2)� (k+2)�12)-level complete binary tree in PTk+2(7) withdilation 3 and congestion 3.From Lemma A.1, the root of the embedded tree is the root of the PT2(7) subgraph,that is of the form x = xk+2xk+1xk:::x1, where xi = 1 for i = 1; :::; k + 2, and the edgesincident to this root have dilation 1 and congestion 1.Corollary A.1 The (3r�b r2c)-level complete binary tree, T (23r�b r2 c�1), can be embeddedinto PTr(7) with dilation 3 and congestion 3. In this embedding the root of the embeddedtree is the root of PTr(7).Proof: If r is odd the above lemma can be trivially applied and the claim follows. Thecase of even r requires a little more elaboration.Note that by removing all the dimension-r edges we obtain 7 disjoint copies ofPTr�1(7). Since r is even r � 1 is odd and the above lemma can be applied to eachcopy. Then T (23(r�1)� r�22) can be embedded in each copy with its root in the nodex = xr�1:::x1, with xi = 1 for i = 1; :::; r� 1.We can now connect the roots of the embedded trees with a dimension-r tree. Thistree has 3 levels and each of its leaves is the root of a (3(r�1)� r�22)-level tree, thereforewe have found an embedding of T (23r� r2 � 1) into PTr(7). Since the dimension-r treeconnects the roots of the 7 copies and the root of the complete binary tree embedded isthe root of this tree, the root of the embedded tree is the node x = xr:::x1, with xi = 1for i = 1; :::; r, root of PTr(7).Then, we can obtain the proof of Theorem 7.5.Proof: Note that if we remove the 2 lowest levels from every tree along each dimensionin PTr(N), where N = 2h�1, we obtain a graph isomorphic to PTr(2h�2�1). Similarly,if we remove the h�3 top levels from every tree along each dimension we obtain a graphformed by 2r(h�3) disjoint copies of PTr(7). Both graphs have exactly 2r(h�3) commonnodes, that are the leaves of the PTr(2h�2�1) graph and the roots of the copies of PTr(7)in the other graph.

APPENDIX 105
(a) (b)Figure A.1: Embedding the (l+5)-level complete binary tree into a subgraph of TT (2l�1; 2; 7).congestion of 3 is found in the edges connecting large empty nodes with small emptynodes in Figure A.1.(a).Since the tree of Figure A.1.(b) has 6 levels and each dark node represents a col-lapsed l-level tree, we have obtained an embedding of the (l + 5)-level complete binarytree into TT (2l � 1; 2; 7) where the dilation and the congestion are 3. From the �gure itis easily veri�ed that the root of the embedded tree coincides with the root of the PT2(7)subgraph and that the edges incident to the root of the tree are edges of TT (2l�1; 2; 7).The properties of the embedding highlighted in the statement of the lemma are neededin order to iteratively apply the embedding (in the next lemma) without increasing thecongestion of the global embedding.Lemma A.2 The (3r� r�12)-level complete binary tree, T (23r� r�12 �1), can be embeddedinto PTr(7), where r is odd, with dilation 3 and congestion 3. In this embedding theroot of the embedded tree is the root of PTr(7) and the edges incident to the root of theembedded tree have dilation 1 and congestion 1.Proof: We prove the claim by induction on the number of dimensions, r. The initialcondition, r = 1, is trivially veri�ed, since PT1(7) is isomorphic to T (7). In the inductionstep we have to show that, given an embedding of T (23k� k�12 �1) into PTk(7) as speci�ed,it is possible to embed T (23(k+2)� (k+2)�12 � 1) into PTk+2(7) as described.Note that by removing all the edges in dimensions k + 1 and k + 2 from PTk+2(7)we obtain 49 disjoint copies of PTk(7). From the induction hypothesis, we can embed adisjoint copy of T (23k� k�12 � 1) into each of these copies. The root of the tree embedded

APPENDIX 104Proof of Theorem 7.5In order to simplify the proofs we will �rst distinguish special sets of nodes in the PTr(N)networks as follows.De�nition A.1 A node x = xr:::x1 is a leaf of PTr(N) if and only if xi is a leaf ofT (N), for i = 1; :::; r.De�nition A.2 The node x = xr:::x1 is the root of PTr(N) if and only if xi = 1 (i.e.xi is the root of T (N)), for i = 1; :::; r.We now de�ne a new class of graphs that is going to be useful in this section. We donot give a special name to the graphs of this class but we instead use a short notationto identify any member of the class.De�nition A.3 TT (M; r;N) is the graph obtained by connecting the roots of N r disjointcopies of T (M) by the PTr(N) pattern, i.e. TT (M; r;N) is obtained by \hanging" acomplete binary tree T (M), from each node of PTr(N).We start by presenting some results that will allow us to reach the �nal result (com-piled as Theorem 7.5.) First we show that the complete binary tree with l + 5 levels,T (2l+5� 1), can be embedded into TT (2l� 1; 2; 7) with constant dilation and congestionand that this embedding has particular properties. These properties allow the iterativeapplication of the embedding without increasing the dilation or the congestion. Thisfact is used to obtain the subsequent results which show how to embed the completebinary tree with 3r � b r2c levels, T (23r�b r2 c � 1), into PTr(7) by iteratively using this�rst embedding. Finally, by combining this results and Theorem 7.4 the general result isobtained.Lemma A.1 T (2l+5�1) can be embedded into TT (2l�1; 2; 7), where l � 2, with dilation3 and congestion 3. In this embedding the root of the embedded tree coincides with theroot of the PT2(7) subgraph of TT (2l � 1; 2; 7) and the edges incident to the root areembedded with dilation 1 and congestion 1.Proof: Figure A.1.(a) shows a subgraph of TT (2l � 1; 2; 7). In this �gure, dark nodesrepresent T (2l�1) trees collapsed into supernodes for the purpose of a suitable abstractionfor the discussion below. Large empty nodes represent roots of other T (2l�1) trees, andsmall empty nodes represent their immediate children in their T (2l � 1) trees. Thesubtrees rooted at small empty nodes are ignored. Figure A.1.(b) shows the tree thatcan be embedded into this subgraph. The edges shown correspond to the edges of thecomplete binary tree embedded.It can be easily checked that any edge in Figure A.1.(b) corresponds to a path oflength not more than 3 in Figure A.1.(a). It can be also easily seen that the maximum

APPENDIX 103Case xk 6= yk: Note that there are p vertex-disjoint paths between xkx and xky alongthe PT kk (N) subgraph. Similarly, there are p vertex-disjoint paths between ykx andyky. These two sets of paths follow the same pattern in their respective subgraphand one path in one set has its corresponding path in the other. Along dimensionk, a unique path exists between corresponding vertices, xkz and ykz, for any vertexz of PTk�1(N).We obtain the �rst paths by taking the shortest path between xkx and xky andthe corresponding path between ykx and yky. We can obtain, then, two shortestvertex-disjoint paths given by xkx! xky ! yky and xkx! ykx! yky.Now, take the p � 1 paths left between xkx and xky. For each path i take anintermediate node xkzi. Then, ykzi is in the corresponding path between ykx andyky. We �nd, then, p�1 vertex-disjoint paths as xkx! xkzi ! ykzi ! yky, for i =1; :::; p�1. Note that, so far, the p+1 paths obtained follow the same pattern alongdimension k because they connect the same pair of PT kk (N) subgraphs. Therefore,at most 2h � 1 PT kk (N) subgraphs have been visited by them.To �nd the remaining pk�1 paths, we need to consider two possibilities. In the �rstcase, the degree of yk is at least equal to the degree of xk, and the pk � 1 paths cantraverse neighbors of yky along dimension k. The second case arises when �x < �yand �xk > �yk . In this case, we need to use the fact that y will have neighbors inits PT kk (N) subgraph not traversed by any of the p initial paths. We may thususe these neighbors to build the required number of new paths. A more formalargument appears below.Let pk � �yk . Then xkx has exactly pk � 1 and yky has at least pk � 1 neighborsalong dimension k not used in the above paths. Each of these neighbors is in adi�erent PT kk (N) subgraph and no one of these subgraphs has been visited in theabove paths. We take pk � 1 of these neighbors. Let xikx denote the ith neighborof xkx and yiky the ith neighbor of yky, for i = 1; :::; pk � 1. We can choose pk � 1vertices zi in PTk�1(N) not visited by any of the paths between x and y and obtainpk � 1 new vertex-disjoint paths as xkx ! xikx ! xikzi ! yikzi ! yiky ! yky, fori = 1; :::; pk � 1.If, on the other hand, pk > �yk , then there are at least pk � �yk neighbors of y notused in the p paths between x and y. Similarly, xkx has at least pk � 1 unuseddimension-k neighbors. Let xikx denote the ith such neighbor of xkx and ykyi theith such neighbor of yky, for i = 1; :::; pk��yk . Then pk��yk paths can be obtainedas xkx! xikx! xikyi ! ykyi ! yky. The remaining �yk � 1 paths can be obtainedby using the procedure of the case pk � �yk .We have, thus, found p+ pk vertex-disjoint paths, and the claim follows.This concludes the proof of the theorem.

APPENDIX 102di�erent dimension-2 tree. Let x2xi1 be one of these neighbors of x, then y2yi1 = y2xi1is also a neighbor of y, for i = 1; :::; p1. Then, p1 paths between x and y can beobtained as x! x2xi1 ! y2xi1 ! y, for i = 1; :::; p1.Finally, note that each of x and y has at least p2 = minf�x2; �y2g � 1 neighborsalong dimension 2 not traversed in previous paths, each in a non-visited dimension-1 tree. We can choose p2 of these neighbors from each of x and y. Since at mostp1 + 1 � 4 dimension-2 trees have been visited by the previous paths, there are atleast N � 4 non-visited dimension-2 trees. We can, then, choose any one of thesenon-visited dimension-2 trees, vi, and obtain a path through the ith neighbor asx! xi2x1 ! xi2vi ! yi2vi ! yi2y1 ! y, for i = 1; :::; p2. This completes the set of mpaths and the claim is shown to be true for this case.Case x2 = y2: This case in analogous to the previous one.Case x2 6= y2; x1 6= y1: The two existing shortest paths can be obtained as x! x2y1 ! yand x! y2x1 ! y. Note that at most 2h� 1 (where N = 2h� 1) dimension-1 anddimension-2 trees are visited by these paths and that only one neighbor of eachx and y along each dimension has been traversed. Furthermore, the remainingneighbors along dimension 1 (resp. dimension 2) are in a non-visited dimension-2(resp. dimension-1) tree. We can, then, obtain p12 = minf�x1; �y2g � 1 paths asx! x2xi1 ! yi2xi1 ! yi2y1 ! y, for i = 1; :::; p12. Similarly, p21 = minf�x2; �y1g � 1paths can be obtained as x! xi2x1 ! xi2yi1 ! y2yi1 ! y, for i = 1; :::; p21.The remaining l = m � p12 � p21 � 2 paths, if l > 0, may be obtained as x !x2xi1 ! uixi1 ! uiyi1 ! y2yi1 ! y or x ! xi2x1 ! xi2vi ! yi2vi ! yi2y1 ! y, whereui are dimension-1 trees not visited in previous paths and vi are dimension-2 treesnot visited in previous paths. A simple case analysis shows that such trees exist.This completes the proof for 2 dimensions. For the purpose of induction, we take twovertices x and y of PTk�1(N), x 6= y. Assume that they are connected by p vertex-disjointpaths, where, without loss of generality, p = �x and p � �y. In PTk(N) these verticesbecome xkx and yky, respectively, where xk and yk are the labels for the dimension k.The minimum vertex degree of the pair is p + pk = minf�xkx; �ykyg, where 1 � pk � 3,and xkx has at least pk neighbors along dimension k.Case xk = yk: Each xkx and yky has exactly pk neighbors along dimension k. Theseneighbors are not visited by the initial p paths because they are in a di�erentPT kk (N) subgraph. If xikx is a neighbor of xkx, for i = 1; :::; pk, then yiky = xiky isalso neighbor of yky, they are both in the same PT kk (N) subgraph, and no otherneighbor is in that subgraph. One path can be found, then, along this subgraphbetween xikx and xiky, for i = 1; :::; pk, and therefore pk new paths can be obtainedbetween xkx and yky. Then, the total number of paths obtained is p + pk and theclaim follows.

AppendixProof of Theorem 7.1Clearly, m is an upper bound on the number of vertex-disjoint paths. We need to showthat it is also a lower bound, by showing how to �nd m such paths. For this proofwe de�ne the concepts of \use of a tree" and \visit of a tree." By \use", we mean thetraversal of at least one edge in the tree. By \visit", we mean the traversal of at leastone node in the tree. Clearly, the use of a tree implies a visit of the tree, whereas a visitof a tree may not use the tree (i.e. if no edges are traversed.)Briey, we obtain the paths in two phases. Initially, we obtain as many vertex-disjointshortest paths between the nodes as possible. Then, we obtain the rest of the paths bydetermining routes between neighbors of the nodes not traversed by the previous paths,along trees not previously visited. This guarantees the vertex disjointness of the paths.The proof proceeds by induction on the number of dimensions. We start by estab-lishing the base case for 2 dimensions. We use a case-by-case study to construct theappropriate number of paths and show that the claim is true for two dimensions.For the induction hypothesis, we assume p paths for the PTk�1(N) subgraph obtainedby taking only k � 1 dimensions, where p is consistent with the claims of the theorem.For the inductive step we add another dimension and we restrict our attention to thenewly added dimension, while treating the rest of the graph as a unit. We show, onceagain by construction, that an appropriate number of paths, as suggested by the variousindividual cases, is added as a result of introducing the new dimension.Along the proof we use �x to represent the vertex degree of a generic vertex x, while�xi refers to the degree of the vertex x along dimension i. In addition, we use the notationxji to denote the jth neighbor of x along dimension i.Then, we start by considering the case for r = 2. The claim for N = 3 is triviallytrue and N > 3 will be assumed. Let x = x2x1 and y = y2y1 be two vertices of PT2(N),x 6= y.Case x1 = y1: The �rst path is obtained by just noting that x and y are in the samedimension-2 tree and that a path can be found in this tree.Another set of paths is derived from the fact that each of x and y has exactlyp1 = �x1 = �y1 neighbors along dimension 1 and each of these neighbors is in a101

BIBLIOGRAPHY 100[86] A. Youssef, \Cartesian Product Networks," in Proceedings of the 1991 InternationalConference on Parallel Processing, vol. I, pp. 684{685, Aug. 1991.[87] M. Zubair and S. N. Gupta, \Embeddings on a Boolean Cube," BIT, vol. 30, pp. 245{256, 1990.

BIBLIOGRAPHY 99[73] D. D. Sherlekar and J. J�aJ�a, \Embedding Graphs in Binary Trees," in Computingand Information: Proceedings of the International Conference on Computing andInformation, ICCI'89 (R. Janichi and W. W. Kczkodaj, eds.), (Toronto, Canada),pp. 111{115, Elsevier Science Publisher B. V. (North-Holland), May 1989.[74] Y. Shiloach and U. Vishkin, \An O(log n) Parallel Connectivity Algorithm," Journalof Algorithms, vol. 3, pp. 57{67, 1982.[75] H. Stone, \Parallel Processing with the Perfect Shu�e," IEEE Transactions onComputers, vol. C-20, pp. 153{161, Feb. 1971.[76] O. S�ykora and I. Vr�to, \On the Crossing Number of the Hypercube and the CubeConnected Cycles," in Proceedings of 17th International Workshop, WG'91, Graph-Theoretic Concepts in Computer Science (G. Schmidt and R. Berghammer, eds.),vol. 570 of Lecture Notes in Computer Science, pp. 214{218, Fischbachau, Germany:Springer Verlag, June 1991.[77] C. D. Thompson, \Area-Time Complexity for VLSI," in Proceedings of the 11thAnnual ACM Symposium on Theory of Computing, (Atlanta), pp. 81{88, May 1979.[78] C. D. Thompson, A Complexity Theory for VLSI. PhD thesis, Carnegie-MellonUniversity, Aug. 1980.[79] C. D. Thompson and H. T. Kung, \Sorting on a Mesh-Connected Parallel Com-puter," Communications ACM, vol. 20, pp. 263{271, Apr. 1977.[80] J. D. Ullman, Computational Aspects of VLSI. Rockville: Computer Science Press,1984.[81] L. G. Valiant, \Universality Considerations in VLSI Circuits," IEEE Transactionson Computers, vol. C-30, pp. 135{140, Feb. 1981.[82] P. M. Weichsel, \Products of Highly Regular Graphs," in Progress in Graph Theory(J. A. Bondy and U. S. R. Murty, eds.), Ontario: Academic Press, 1984.[83] M. Yoeli, \Binary Ring Sequences," Amer. Math. Monthly, vol. 69, pp. 852{855,1962.[84] A. S. Youssef and B. Narahari, \The Banyan-Hypercube Networks," IEEE Trans-actions on Parallel and Distributed Systems, vol. 1, pp. 160{169, 1990.[85] A. Youssef, \Product Networks: A Uni�ed Theory of Fixed Interconnection Net-works," Tech. Rep. GWU-IIST-90-38, Institute for Information Science and Tech-nology, The George Washington University, Washington, D.C., Dec. 1990.

BIBLIOGRAPHY 98[60] N. Ranganathan and S. Venugopal, \An E�cient VLSI Architecture for TemplateMatching," in Proceedings of the 1994 International Conference on Parallel Process-ing, vol. I, (St. Charles, IL), pp. 224{231, CRC Press Inc., Aug. 1994.[61] A. L. Rosenberg, \Product-Shu�e Networks: Toward Reconciling Shu�es and But-teries," Discrete Applied Mathematics, vol. 37/38, pp. 465{488, July 1992.[62] Y. Saad and M. H. Schultz, \Topological Properties of Hypercubes," IEEE Trans-actions on Computers, vol. 37, no. 7, pp. 867{872, 1988.[63] G. Sabidussi, \Graphs with Given Group and Given Graph-Theoretical Properties,"Canadian Journal of Mathematics, vol. 9, pp. 515{525, 1957.[64] G. Sabidussi, \Graph Multiplication," Math. Zeitschr., vol. 72, no. 5, pp. 446{457,1960.[65] K. Sado and Y. Agarasi, \Some Parallel Sorts on a Mesh-Connected Processor Arrayand their Time E�ciency," Journal of Parallel and Distributed Computing, vol. 3,pp. 398{410, Sept. 1986.[66] I. Scherson, S. Sen, and A. Shamir, \Shear-Sort: A True Two-Dimensional Sort-ing Technique for VLSI Networks," in Proceedings of the IEEE-ACM InternationalConference on Parallel Processing, pp. 903{908, Aug. 1986.[67] C. P. Schnorr and A. Shamir, \An Optimal Sorting Algorithm for Mesh ConnectedComputers," in Proceedings of the 18th Annual ACM Symposium on Theory of Com-puting, (Berkeley, CA), pp. 255{263, May 1986.[68] E. J. Schwabe, \Embedding Meshes of Trees into deBruijn Graphs," InformationProcessing Letters, vol. 43, pp. 237{240, 1992.[69] H. S. Shapiro, \The Embedding of Graphs in Cubes and the Design of SequentialRelay Circuits," unplublished Bell Telephone Laboratories Memorandum, July 1953.[70] D. D. Sherlekar and J. J�aJ�a, \Layouts of Graphs of Arbitrary Degree," in Proceedingsof the 25th Annual Allerton Conference, Sept. 1987.[71] D. D. Sherlekar and J. J�aJ�a, \Balanced Graph Dissections and Layouts for Hierar-chical VLSI Layout Design," Tech. Rep. CSE-TR-22-89, Department of ElectricalEngineering and Computer Sciente, University of Michigan, Ann Arbor, 1989.[72] D. D. Sherlekar and J. J�aJ�a, \Input Sensitive VLSI Layouts for Graphs of ArbitraryDegree," in Proceedings of the 3rd Aegean Workshop on Computing, AWOC 88:VLSI Algorithms and Architectures (J. H. Reif, ed.), vol. 319 of Lecture Notes inComputer Science, pp. 268{277, Corfu, Greece: Springer Verlag, July 1988.

BIBLIOGRAPHY 97[48] K. J. Liszka and K. E. Batcher, \AGeneralized Bitonic Sorting Network," in Proceed-ings of the 1993 International Conference on Parallel Processing, vol. I, pp. 105{108,1993.[49] T. Nakatani, S.-T. Huang, B. W. Arden, and S. K. Tripathi, \K-Way Bitonic Sort,"IEEE Transactions on Computers, vol. 38, pp. 283{288, Feb. 1989.[50] D. Nassimi and S. Sahni, \Bitonic Sort on a Mesh-Connected Parallel Computer,"IEEE Transactions on Computers, vol. C-27, pp. 2{7, Jan. 1979.[51] D. Nath, S. N. Maheshwari, and P. C. P. Bhatt, \E�cient VLSI Networks for ParallelProcessing Based on Orthogonal Trees," IEEE Transactions on Computers, vol. C-32, pp. 569{581, June 1983.[52] J. Ne�set�ril and V. R�odl, \Products of Graphs and Their Applications," in Proceedingsof Graph Theory, Lag�ow 1981 (M. Borowiecki, J. W. Kennedy, and M. M. Syslo,eds.), vol. 1018 of Lecture Notes in Mathematics, pp. 151{160, Lag�ow: SpringerVerlag, 1981.[53] S. R. �Ohring and S. K. Das, \The Folded Petersen Cube Networks: New Competitorsfor the Hypercube," in Proceedings of the 5th IEEE Symposium on Parallel andDistributed Computing, pp. 582{589, Dec. 1993.[54] S. R. �Ohring and S. K. Das, \The Folded Petersen Network: A New Communication-E�cient Multiprocessor Topology," in Proceedings of the 1993 International Con-ference on Parallel Processing, vol. I, pp. 311{314, Aug. 1993.[55] S. R. �Ohring and S. K. Das, \Mapping Dynamic Data and Algorithm Structuresinto Product Networks," in Proceedings of ISAAC'93, (Hong Kong), pp. 147{156,Dec. 1993.[56] S. R. �Ohring and D. H. Hohndel, \Optimal Fault-Tolerant Communication Algo-rithms on Product Networks using Spanning Trees," in Proceedings of the 6th IEEESymposium on Parallel and Distributed Processing, (Dallas,TX), Oct. 1994.[57] R. B. Panwar and L. M. Patnaik, \Solution of Linear Equations on Shu�e-Exchangeand Modi�ed Shu�e Exchange Networks," in Proceedings of the 26th Allerton Con-ference, pp. 1116{1125, 1988.[58] F. Preparata and J. Vuillemin, \Area-optimal VLSI Network for Matrix Multiplica-tion," in Proceedings of the 14th Princeton Conference on Information Science andSystems, pp. 300{309, 1980.[59] F. Preparata and J. Vuillemin, \The Cube-Connected Cycles: A Versatile Networkfor Parallel Computation," Communications ACM, vol. 24, pp. 300{309, May 1981.

BIBLIOGRAPHY 96[34] P. C. Kainen, \A Lower Bound for Crossing Numbers of Graphs with Applicationsto Kn, Kp;q, and Q(d)," Journal of Combinatorial Theory, vol. 12, pp. 287{298,1972.[35] D. J. Kleitman, \The Crossing Number of K5;n," Journal of Combinatorial Theory,vol. 9, pp. 315{323, 1971.[36] D. Knuth, Searching and Sorting, vol. 3 of The Art of Computer Programming.Reading, MA: Addison-Wesley, 1973.[37] R. Koch, T. Leighton, B. Maggs, S. Rao, and A. L. Rosenberg, \Work-PreservingEmulations of Fixed-Connection Networks," in Proceedings of the 21st Annual ACMSymposium on Theory of Computing, (Seattle), pp. 227{240, May 1989.[38] D.-L. Lee and K. E. Batcher, \On Sorting Multiple Bitonic Sequences," in Pro-ceedings of the 1994 International Conference on Parallel Processing, vol. I, (St.Charles,IL), pp. 121{125, Aug. 1994.[39] F. T. Leighton, \New Lower Bound Techniques for VLSI," in Proceedings of the22nd Annual Symposium on Foundations of Computer Science, pp. 1{12, 1981.[40] F. T. Leighton, \A Layout Strategy for VLSI Which Is Provably Good," in Proceed-ings of the 14th Annual ACM Symposium on Theory of Computing, (San Francisco,CA), pp. 85{98, May 1982.[41] F. T. Leighton, Complexity Issues in VLSI. Cambridge: The MIT Press, 1983.[42] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees,and Hypercubes. San Mateo: Morgan Kaufmann, 1992.[43] C. E. Leiserson, \Area-E�cient graph Layout (for VLSI)," in Proceedings of the 21stAnnual Symposium on Foundations of Computer Science, pp. 270{281, Oct. 1980.[44] C. E. Leiserson, Area-E�cient VLSI Computation. PhD thesis, Carnegie-MellonUniversity, 1981. The MIT Press, 1983.[45] E. L. Leiss and H. N. Reddy, \Embedding Complete Binary Trees into Hypercubes,"Information Processing Letters, vol. 38, pp. 197{199, 1991.[46] R. J. Lipton and R. E. Tarjan, \A Separator Theorem for Planar Graphs," SIAMJournal on Applied Mathematics, vol. 36, pp. 177{189, Apr. 1979.[47] R. J. Lipton and R. E. Tarjan, \Applications of a Planar Separator Theorem," SIAMJournal on Computing, vol. 9, pp. 615{627, Aug. 1980.

BIBLIOGRAPHY 95[22] K. Efe, \Embedding Mesh of Trees in the Hypercube," Journal of Parallel andDistributed Computing, vol. 11, pp. 222{230, Mar. 1991.[23] K. Efe and K. Ramaiyer, \Congestion and Fault Tolerance of Binary Tree Embed-dings on Hypercube," in Proceedings of the 5th International Parallel ProcessingSymposium, (Anaheim, CA), pp. 458{463, May 1991.[24] T. El-Ghazawi and A. Youssef, \A Uni�ed Approach to Fault-Tolerant Routing," inProceedings of the 12th International Conference on Distributed Computing Systems,(Yokohama, Japan), pp. 210{217, June 1992.[25] R. Feldmann and P. Mysliwietz, \The Shu�e Exchange Network has a HamiltonianPath," in Proceedings of Mathematical Foundations of Computer Science, pp. 246{254, 1992.[26] J. P. Fishburn and R. A. Finkel, \Quotient Networks," IEEE Transactions on Com-puters, vol. 31, pp. 288{295, Apr. 1982.[27] R. W. Floyd and J. D. Ullman, \The Compilation of Regular Expressions intoIntegrated Circuits," J. ACM, vol. 29, pp. 603{622, July 1982.[28] E. Ganesan and D. K. Pradhan, \The Hyper-deBruijn Networks: Scalable Versa-tile Architecture," IEEE Transactions on Parallel and Distributed Systems, vol. 4,pp. 962{978, Sept. 1993.[29] D. Greenberg, L. Heath, and A. L. Rosenberg, \Optimal Embeddings of Buttery-like Graphs in the Hypercube,"Mathematical Systems Theory, vol. 23, no. 1, pp. 61{77, 1990.[30] F. Harary, \On the Group of the Composition of Two Graphs," Duke MathematicalJournal, vol. 26, pp. 29{34, Mar. 1959.[31] I. Havel and P. Liebl, \Embedding the Polytomic Tree into the n-cube," �Casopispro P�estov�an �i Matematiky, vol. 98, pp. 307{314, 1973.[32] R. Heckmann, R. Klasing, B. Monien, and W. Unger, \Optimal Embeddings ofComplete Binary trees into Lines and Grids," in Proceedings of 17th InternationalWorkshop, WG'91, Graph-Theoretic Concepts in Computer Science (G. Schmidt andR. Berghammer, eds.), vol. 570 of Lecture Notes in Computer Science, pp. 25{35,Fischbachau, Germany: Springer Verlag, June 1991.[33] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate, \Computing Connected Com-ponents on Parallel Computers," Communications ACM, vol. 22, pp. 461{464, Aug.1979.

BIBLIOGRAPHY 94[11] S. N. Bhatt and C. E. Leiserson, \Minimizing Wire Delay in VLSI Layouts," MITVLSI memo 82-86, 1982.[12] L. Bhuyan and D. P. Agrawal, \Generalized Hypercubes and Hyperbus Structuresfor a Computer Network," IEEE Transactions on Computers, vol. C-33, pp. 323{333,1984.[13] M. Y. Chan, F. Y. L. Chin, and C. K. Poon, \Optimal Speci�ed Root Embeddingof Full Binary Trees in Faulty Hypercubes," in Proceedings of the 2nd InternationalSymposium on Algorithms (W. L. Hsu and R. C. T. Lee, eds.), vol. 557 of LectureNotes in Computer Science, pp. 241{250, Taipei, R.O.C.: Springer Verlag, Dec.1991.[14] M. Y. Chan and S.-J. Lee, \Fault-Tolerant Embedding of Complete Binary Treesin Hypercubes," IEEE Transactions on Parallel and Distributed Systems, vol. 4,pp. 277{288, Mar. 1993.[15] P. Z. Chinn, J. Chv�atalov�a, A. K. Dewdney, and N. E. Gibbs, \The Bandwidth Prob-lem for Graphs and Matrices-A Survey," Journal of Graph Theory, vol. 6, pp. 223{254, 1982.[16] F. R. K. Chung, \Labelings of Graphs," in Selected Topics in Graph Theory 3 (L. W.Beineke and R. J. Wilson, eds.), pp. 151{168, Academic Press, 1988.[17] J. Chv�atalov�a, \Optimal Labelling of a Product of Two Paths," Discrete Mathemat-ics, vol. 11, pp. 249{253, 1975.[18] O. Collins, S. Dolinar, R. McEliece, and F. Pollara, \A VLSI Decomposition of thedeBruijn Graph," J. ACM, vol. 39, pp. 931{948, Oct. 1992.[19] R. Cypher and C. G. Plaxton, \Deterministic Sorting in Nearly Logarithmic Timeon the Hypercube and Related Computers," in Proceedings of the 22nd AnnualACM Symposium on Theory of Computing, (Baltimore, Maryland), pp. 193{203,May 1990.[20] S. K. Das and A. K. Banerjee, \Hyper Petersen Networks: Yet Another Hypercube-Like Topology," in Proceedings of the 4th Symposium on the Frontiers of MassivelyParallel Computation, (McLean, VA), pp. 270{277, Computer Society Press, Oct.1992.[21] A. M. Despain and D. A. Patterson, \X-Tree: A Tree Structured Multi-ProcessorComputer Architecture," in Proceedings of the 5th Annual Symposium on ComputerArchitecture, pp. 144{151, 1978.

Bibliography[1] F. Annexstein, M. Baumslag, and A. L. Rosenberg, \Group Action Graphs andParallel Architectures," SIAM Journal on Computing, vol. 19, pp. 544{569, June1990.[2] K. Batcher, \Sorting Networks and their Applications," in Proceedings of the AFIPSSpring Joint Computing Conference, vol. 32, pp. 307{314, 1968.[3] K. E. Batcher, \On Bitonic Sorting Networks," in Proceedings of the 1990 Interna-tional Conference on Parallel Processing, vol. I, pp. 376{379, 1990.[4] M. Baumslag and F. Annexstein, \A Uni�ed Framework for O�-Line PermutationRouting in Parallel Networks," Math. Systems Theory, vol. 24, no. 4, pp. 233{251,1991.[5] S. N. Bhatt, F. R. K. Chung, J. W. Hong, F. T. Leighton, and A. L. Rosenberg,\Optimal Simulations by Buttery Networks," in Proceedings of the 20th AnnualACM Symposium on Theory of Computing, (Chicago), pp. 192{204, May 1988.[6] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, \Optimal Simu-lations of Tree Machines," in Proceedings of 27th Annual Symposium on Foundationsof Computer Science, pp. 274{282, Oct. 1986.[7] S. N. Bhatt, F. R. K. Chung, J.-W. Hong, F. T. Leighton, B. Obreni�c, A. L.Rosenberg, and E. J. Schwabe, \Optimal Emulations by Buttery-Like Networks,"J. ACM, 1994. to appear.[8] S. N. Bhatt and I. C. F. Ipsen, \How to Embed Trees in Hypercubes," Tech. Rep.RR-443, Department of Computer Science, Yale University, New Haven, CT, 1985.[9] S. N. Bhatt and F. T. Leighton, \A Framework for Solving VLSI Graph LayoutProblems," Journal of Computer and System Sciences, vol. 28, pp. 300{343, 1984.[10] S. N. Bhatt and C. E. Leiserson, \How to Assemble Tree Machines," in Proceedingsof the 14th Annual ACM Symposium on Theory of Computing, (San Francisco, CA),pp. 77{84, May 1982. 93

CHAPTER 8. CONCLUSIONS 92lay out these networks in such a way that, in many cases, the layout is optimal inarea and almost optimal in wire length.� We have exhaustively applied all the above results to several speci�c instances ofproduct networks, as a proof of the power of the approach. Then we have con-centrated in three speci�c networks and we have been able to show, among otherproperties, that these product networks are more powerful than their respectivefactor graphs, with a small increase in cost. The emulation capabilities of thesenetworks present them as important candidates for popular interconnection net-works.As a conclusion, we have been able to create a basic framework for a general theorywhere existing and new homogeneous product networks can be evaluated. Observe thatwe have reached generality without losing e�ciency. The methods to obtain VLSI layoutsfor the networks, besides their generality, produce very e�cient layout in most of thecases (layouts optimal in area and almost optimal in wire length.) Similarly, the sortingalgorithm developed has optimal complexity in a bounded-dimension grid and has thesame complexity as the most popular sorting algorithm in the hypercube.Like any research of this generality, there is room for extensions. More results on otherstructural properties of homogeneous product networks can be derived. Even our boundson the bisection width and the crossing number can be made tighter. For instance, it isnot known the exact value of the bisection width of such a simple product network asthe N r-node r-dimensional grid when N is odd [42].Many new general algorithms can be developed for homogeneous product networks.Speci�cally, because we have assumed a SIMDmodel of computation, we have only brieyaddressed the routing problems in homogeneous product networks (sections 1.1 and 5.2.)However, if a MIMD model is assumed, many new routing problems arise which can beaddressed using the proposed framework. For instance, it seems to be very interesting toobtain a general wormhole-routing algorithm for homogeneous product networks.Finally, since general product networks need not be built with the same factor graphin each dimension, it is necessary to extend all the investigations conducted and the openproblems presented to heterogeneous product networks. For instance, at the end of Sec-tion 6.4 we briey outlined how the results obtained in VLSI complexity for homogeneousproduct networks could be extended to heterogeneous product networks.

Chapter 8ConclusionsThe main contribution of the dissertation described in this prospectus is to conduct anexhaustive study of homogeneous product networks as interconnection networks. To ourknowledge, this is the �rst study of this kind realized. This study is useful given thenumber of product networks already proposed in the literature. This study can also beused to evaluate properties of new interconnection networks for parallel architectures.The comprehensive investigation of homogeneous product networks has been devel-oped along several lines:� We have obtained general results on the structural properties of product networks.We have presented important characteristics like the vertex degree, the diameter,the partitionability, and the connectivity. We specially emphasize the results onthe bisection width and the crossing number, since they are not easily derived fromsame properties of the factor graph. To obtain these properties we have de�neda new parameter of a graph, the maximal congestion, which we believe will beimportant in future research.� We have obtained several general embedding properties, applicable to any productnetwork. The combination of these properties with embeddings between factorgraphs allows to obtain important embedding results for product networks, as hasbeen seen in the presented examples. These results will allow to meaningfullycompare the relative powers of product networks.� We have produced general algorithms whose performance is optimal for some in-stances of product networks. The algorithms developed allow to sort, computesummations, multiply matrices, and �nd the minimum-weight spanning tree of agraph in homogeneous product networks. Other algorithms with similar structureare simply derived from the ones presented.� We have obtained lower bounds on the VLSI layout area and wire length required byhomogeneous product networks. We have also developed procedures to e�ectively91

CHAPTER 7. INTERESTING PRODUCT NETWORKS 90our networks emulate the grid e�ciently while they require logarithmic dilation to hostit. Observe again that the cost in layout area of the additional power is not high if webound the number of dimensions.Therefore, depending on the speci�c purpose of the network we o�er three interestingcandidates with bounded degree. If still more computational power is needed, it might benecessary to use higher-cost networks with unbounded vertex degree, like the hypercube.

CHAPTER 7. INTERESTING PRODUCT NETWORKS 89PTr(N) PSr(N) PDr(N)PRr(N) d = 3, c = 2 d = 3, c = 2 SubgraphPLr(N) d = 3, c = 2 Subgraph SubgraphM.o.T. Subgraph d = 2, c = 2 SubgraphC.B.T. Subgraph d = 2, c = 2 SubgraphS(N r) - d = 2r, c = 2 d = 4r, c = 4D(N r) - d = 2r, c = 8 d = r, c = 4PTr(N � 1) N/A d = 2, c = 2 SubgraphPSr(N) - N/A d = 2, c = 2PDr(N) - d = 2, c = 2 N/ATable 7.2: Embedding capabilities of the product of complete binary trees, shu�e-exchange, and de Bruijn graphs.From the �gures in Table 7.1 we can see that all the three networks present interestingproperties. Their diameter is logarithmic with respect to the number of nodes, they havelarge bisection width, and rather large connectivity if r is large. Also, all of them performvery e�ciently the algorithms presented. Finally, the layout area required for them isreasonably small. The product of complete binary trees has same asymptotic layoutarea as the mesh of trees, while we have shown that the former is more powerful. Theother two networks have similar asymptotic layout area than their factor networks if r isbounded, while we proved that they are more powerful.However, the real power of the networks presented comes from their embedding capa-bilities. The product of complete binary trees (and its extension) can e�ciently emulatethe torus, the mesh of trees, and the complete binary tree. Any embedding of the n-nodemesh of trees into the similar-size grid requires
(n= log n) dilation, given their respectivediameters, while no e�cient emulations of the grid by the mesh of trees is known. Thus,the PTr(N) network (and specially the PXr(N) network) seems more powerful than boththese networks, and the logical option if we need a network with the capabilities of thegrid and the mesh of trees. If we add to this that the network has the same layout areacomplexity as the mesh of trees and, for more than 2 dimensions, than the grid, it lookslike a clear substitute to them.Now, if further computational power is needed, we can use the products of shu�e-exchange or de Bruijn graphs. By emulation, these networks give us the power of thePTr(N) network plus the power of hypercube-derived networks. This fact will speed upsome computations not suited to be performed neither on the grid nor on the mesh of trees(for instance, sorting) but which are very e�ciently performed in a hypercube-derivednetwork. Another advantage of these networks over the traditional hypercube-derivednetworks used (pure shu�e-exchange, de Bruijn, buttery, cube-connected cycles) is that

CHAPTER 7. INTERESTING PRODUCT NETWORKS 88
Property/algorithm PTr(N) PSr(N) PDr(N)Nodes N r N r N rEdges r(N � 1)N r�1 3rN r=2 2rN rDiameter 2r(log(N + 1)� 1) r(2 logN � 1) r logNConnectivity r r 2r� r 3r 4r� 3r 3r 4rPartitionability 2i, i = 0; :::; log(N + 1) - -Maximal congestion O(N r+1) O(N r logN) O(N r logN)Bisection width �(N r�1) �(N r= logN) �(N r= logN)Crossing number
(N2(r�1))
(N2r=log2N)
(N2r=log2N)Sorting O(r2N) O(r2 log2N) O(r2 log2N)Summation O(r logN) O(r logN) O(r logN)Matrix multiplication O(r logN) O(r logN) O(r logN)Min.-weight span. tree O(r2 log2N) O(r2 log2N) O(r2 log2N)Layout area �(N2(r�1)) (for r > 2) �(N2r=log2N) �(N2r=log2N)Max. wire length O(N r�1) (for r > 2) O(N r= logN) O(N r= logN)Table 7.1: Comparison of the properties of the product of complete binary trees, shu�e-exchange, and de Bruijn graphs.

CHAPTER 7. INTERESTING PRODUCT NETWORKS 87Therefore, the �rst and last edges of the paths are traversed by two of the four pathsand the internal edges of the paths are traversed by the four paths. Since the edgestraversed by these four paths are not traversed by any other path, we can conclude thatthe congestion of the embedding is at most four. Since for r = 2 the paths have length2 and have no internal edges, the congestion in this case is only 2.It has been shown in [26] that D(2k) can host D(2k+j) with unit dilation cost. Inthe resultant emulation, each vertex of D(2k) is assigned exactly 2j nodes (the load ofthe embedding.) The proof is based on the observation that, by erasing the rightmost jbits from vertex labels of D(2k+j), we obtain a graph isomorphic to D(2k). By the sameobservation, the following results can be stated.Corollary 7.3 D(N r+j) can be embedded onto PDr(N) with dilation r, congestion 4 (2if r = 2), and load N j.And moreover,Corollary 7.4 PDr(N2k) can be embedded onto PDr(N) with unit dilation, unit con-gestion, and load 2kr.Therefore, for �xed r, a small size PDr(N) architecture can easily emulate larger sizemachines with proportional slowdown in the running time.Finally, the next result shows that products of de Bruijn graphs are more powerfulthan the pure de Bruijn graphs (this is an extension of a similar result in [61] given fortwo dimensions.)Theorem 7.13 Any embedding of PDr(N) onto D(N r) requires dilation
(log(r logN)).Proof: From Corollary 4.4, we know that the grid PLr(N) is a subgraph of PDr(N). Itis shown in [7] that any embedding of PLr(N), for r > 1, onto D(N r) requires dilationcost
(log logN r). Hence, the claim follows.Like the PSr(N) network, the VLSI layout area required by PDr(N) is asymptoticallythe same as that required by D(N r) if r is bounded. The increase in power comes atreasonable cost.7.4 Discussions and ConclusionsIn this chapter we have completed the study in depth of three new homogeneous productnetworks. In Table 7.1 we have compiled their structural and VLSI complexity properties,as well as the time complexity of running the algorithms presented for homogeneousproduct networks.

CHAPTER 7. INTERESTING PRODUCT NETWORKS 86Proof: The case for r = 2 was shown in [61]. For higher dimensions, since PDr(N) =D(N)
 PDr�1(N), a vertex of PDr(N) can be written as u = urn�1urn�2:::u(r�1)njS0,where S0 is a vertex in PDr�1(N). For the discussion below, we are only interested inthe leftmost bit in S0, so we can write it as S0 = sS. That is,u = urn�1urn�2:::u(r�1)njsS:In D(N r), the outgoing edges are tov = urn�2:::u(r�1)nsjSurn�1and w = urn�2:::u(r�1)nsjSurn�1:For PDr(N), u has two neighbors at the highest dimension, x and y, wherex = urn�2:::u(r�1)nurn�1jsSand y = urn�2:::u(r�1)nurn�1jsS:Let x` denote the leftmost (logN)-bit substring of x (i.e. the part to the left of \j".)Then, observe that v` = w` = (x` if urn�1 = s;y` otherwiseThis means that, by following one of the outgoing edges from u at the highest di-mension, we correct the leftmost logN bits of the address towards v. Since the next setof logN bits can be corrected by the same method as above, r � 1 additional steps areneeded to reach v.We can study now the congestion of the embedding. Note that the �rst edge of thepath from u to v and the �rst edge of the path from u to w are the same, since dependingon s the correction of the leftmost logN bits of u takes both paths to either x or y.Furthermore, the paths from u to v and form u to w share all the edges but the last one,where the rightmost logN bits are corrected.Similarly, there exist edges in D(N r) from the nodeu0 = urn�1urn�2:::u(r�1)njsSto v and w. The paths in PDr(N) from u0 to v and from u0 to w have a common �rstedge, that depending on s takes the paths to either x or y. From there they share all theedges but the last one. The paths from u to v and from u0 to v share all the edges butthe �rst one, and same thing happens with the paths from u to w and from u0 to w.

CHAPTER 7. INTERESTING PRODUCT NETWORKS 85Proof: The proof is very simple. It has been shown in [7] that any embedding of the gridPLr(N), for r > 1, into the similar-size shu�e-exchange requires dilation
(log logN r).Since this grid is a subgraph of PSr(N), the claim follows.The results presented for PSr(N) show that the network is more powerful than itsfactor network. Observe that, if the number of dimensions is bounded, their VLSI layoutarea complexity is asymptotically the same.7.3 Products of de Bruijn GraphsWe �nally study in this section the product of de Bruijn graphs, denoted PDr(N). Com-paring to the product networks in the previous sections, the vertex degree of this networkincreases by 25%, while PDr(N) has better properties in other respects. Diameter re-duces by 50%, and the minimum number of parallel paths between an arbitrary pair ofvertices doubles. It also has better embedding properties as is shown below.It is well known that shu�e-exchange and de Bruijn networks are computationallyequivalent. That is, every computation which can be performed on one of them, can bealso performed on the other with constant slowdown. We presented in Corollary 4.6 thatthis is also true for their respective product versions. However, PDr(N) presents betterdilation and congestion in most of the embeddings.We �rst present a whole family of tori as subgraphs of PDr(N).Theorem 7.11 For all k � N , PRr(k) is a subgraph of PDr(N).Proof: Due to Theorem 4.1, it su�ces to note that the de Bruijn network is pancyclic[83], i.e. for every value of k � N , D(N) contains a cycle of length k.In Section 4.2 we have presented the fact that PTr(N) is a subgraph of PDr(N).Therefore, the following corollary is immediate.Corollary 7.2 The r-dimensional mesh of (N � 1)-node trees is a subgraph of PDr(N).Observe that this embedding is much better than the embedding of the 2-dimensionalmesh of trees into the pure de Bruijn graph presented in [68], which presents dilation of2, congestion of 8, and load of 2.The next two results show that PDr(N) is more powerful than the de Bruijn graphD(N r).Theorem 7.12 D(N r) can be embedded onto PDr(N) with dilation r, and congestion 2when r = 2, or congestion 4 when r > 2.

CHAPTER 7. INTERESTING PRODUCT NETWORKS 84above.) Then, observe that v` = (xs̀ if urn�1 = s;xè otherwiseThat is, xe is at a distance of two from u, and going from u to xe corrects just the leftmostlogN bits of the address towards v. Since the next set of logN bits can be corrected bythe same method as above, 2(r � 1) additional steps are needed to reach v.To study the congestion of the described embedding we take two vertices of S(N r),where the leftmost logN bits and the rightmost logN bits are explicitly shown, andS0 = sS is a vertex in PSr�2(N), asu = urn�1urn�2:::u(r�1)njsSjun�1un�2:::u0and u0 = urn�1urn�2:::u(r�1)njsSjun�1un�2:::u0whose respective shu�e neighbors arev = urn�2:::u(r�1)nsjSun�1jun�2:::u0urn�1and v0 = urn�2:::u(r�1)nsjSun�1jun�2:::u0urn�1The paths in PSr(N) for the edges (u; v) and (u0; v0) meet at the nodeurn�2:::u(r�1)nsjsSjun�1un�2:::u0after the leftmost logN bits have been corrected (by traversing one or two edges, de-pending on whether urn�1 = s.) From there, both paths share the same edges until thenode urn�2:::u(r�1)nsjSun�1jun�2:::u0un�1is reached. Since no other paths contain these edges the congestion in the edges traverseduntil this point is at most 2.Let assume now, without loss of generality, that un�1 = urn�1. Then, the vertexreached by the paths is v and the edge (u; v) has been completely mapped. The pathfrom u0 to v0 still needs to traverse an exchange edge to invert its rightmost bit. The pathonly shares this edge with the exchange edge (v; v0) in S(N r) and then, the congestionof the edge is 2.Hence, the congestion of the embedding is 2 and the proof is complete.Theorem 7.10 Any embedding of PSr(N) into S(N r) requires dilation
(log(r logN)).

CHAPTER 7. INTERESTING PRODUCT NETWORKS 83and ws;c = u2n�2:::un+1unu2n�1jun�1un�2:::u1u0In the following discussion, subscripts \`" and \r" are used to denote the left-handhalf of a label, and the right-hand half of a label. For example, ws;c` denotes the left-handhalf of the vertex ws;c above. There are two cases to consider:Case 1: u2n�1 = un�1. In this case the reader can easily verify that v = ws;c` jws;rr .This means that one can go from u to v in PS2(N) in two steps: by moving tothe shu�e neighbor of u in the column and then to the shu�e neighbor in the row.Alternatively, one can move to the shu�e neighbor in the row �rst, and then in thecolumn.Case 2: u2n�1 6= un�1. Then, given u and v as above, the left-hand half and theright-hand half of v can be computed as:v` = ws;c` + we;c`and vr = ws;rr + we;rrwhere the \+" sign denotes sequencing of the two moves. That is, ws;cr + we;crdenotes moving to the shu�e neighbor in the column, followed by moving to theexchange neighbor in the column. Since v = v`jvr, a sequence of four moves yieldsthe desired vertex label.To extend these arguments for r > 2, since PSr(N) = S(N)
PSr�1(N), a vertex ofPSr(N) can be written as u = urn�1urn�2:::u(r�1)njS0, where S0 is a vertex in PSr�1(N).For the discussion below, only the leftmost bit of S0 is relevant, so we can write S0 = sS.That is, u = urn�1urn�2:::u(r�1)njsS:In S(N r), the shu�e neighbor isv = urn�2:::u(r�1)nsjSurn�1For the product network, u has a shu�e neighbor xs, wherexs = urn�2:::u(r�1)nurn�1jsSwhich in turn has an exchange neighbor xe, wherexe = urn�2:::u(r�1)nurn�1jsSLet x` denote the leftmost logN -bit substring of x (i.e. the part to the left of \j"

CHAPTER 7. INTERESTING PRODUCT NETWORKS 82shu�e-exchange graph. However the resulting embedding has larger load, dilation, andcongestion than the one presented here into PSr(N).The next two results consider the embedding of the shu�e-exchange graph into itsproduct version, and the reverse embedding of the product network into the pure shu�e-exchange graph.Theorem 7.9 S(N r) can be embedded onto PSr(N) with dilation 2r and congestion 2.Proof: First consider the case for r = 2. Both S(N2) and PS2(N) are labeled by(2 logN)-bit strings. For the product graph, the rightmost logN bits determine the\row address," while the leftmost logN bits determine the \column address." We showthat whenever (u; v) is an exchange edge in S(N2), it is also an exchange edge in PS2(N).Alternatively, whenever (u; v) is a shu�e edge in S(N2), there is a path of length at most4 from u to v in PS2(N).Consider the vertex:u = u2n�1u2n�2:::un+1unjun�1un�2:::u1u0Here \j" separates the left-hand half of the label from the right-hand half. We use directededges as we did in De�nition 2.10 to simplify the proof. Then, it su�ces to focus on theoutgoing edges only. If v is the exchange neighbor of u in S(N2), thenv = u2n�1u2n�2:::un+1unjun�1un�2:::u1u0In the PS2(N) graph, u has an exchange neighbor w in its row, whose address is obtainedby complementing the rightmost bit of the address. Clearly, w = v. In fact, it is true forarbitrary r that whenever (u; v) is an exchange edge of S(N r), it is also an exchange edgeof PSr(N). Therefore, the rest of this proof only needs to consider the shu�e edges.Now suppose (u; v) is a shu�e edge in S(N2). If u is as above, v must be:v = u2n�2:::un+1unun�1jun�2:::u1u0u2n�1:For PS2(N), the row neighbors of u arewe;r = u2n�1u2n�2:::un+1unjun�1un�2:::u1u0and ws;r = u2n�1u2n�2:::un+1unjun�2:::u1u0un�1where the superscripts \e; s; r" stand for \exchange," \shu�e," and \row," respectively.The column neighbors of u, indicated by the superscript \c," arewe;c = u2n�1u2n�2:::un+1unjun�1un�2:::u1u0

CHAPTER 7. INTERESTING PRODUCT NETWORKS 81left subtree.It can be easily shown that this new product network has the same VLSI layoutcomplexity as the original PTr(N). Therefore it seems to be even more interesting thanthe original network.7.2 Products of Shu�e-Exchange GraphsThe second network studied in this chapter is the product of shu�e-exchange graphs,denoted PSr(N). We have observed many interesting properties of this network. Thisnetwork seems to be more powerful than the pure shu�e-exchange graph from severalpoints of view. Its connectivity is larger, as well as its bisection width. This networkcan emulate the grid with constant dilation, while any embedding of the grid into theshu�e-exchange of similar size requires unbounded dilation.Here we present several results that further show the power of this network, to �nallyprove that it is even more powerful than the pure shu�e-exchange.We �rst show that products of binary trees can be embedded in the products ofshu�e-exchange graphs with dilation 2 and congestion 2. While this result carries all theembedding properties of PTr(N) to the PSr(N) graph, it may be better to �nd directembeddings for some cases. Next, it is shown that the shu�e-exchange graph S(N r) canbe embedded onto PSr(N) with dilation 2r and congestion 2. For an implementationwith a �xed number of dimensions, this embedding can be considered of constant dilation,particularly because N can grow independently from r. Moreover, it is shown thatPSr(N) cannot be embedded onto S(N r) with less than logarithmic dilation. This makesthe product network more powerful than the shu�e-exchange network itself.Theorem 7.8 PTr(N � 1) can be embedded into PSr(N) with dilation 2 and congestion2.Proof: Due to corollaries 4.1 and 4.2, it su�ces to show that T (N�1) can be embeddedinto S(N) with dilation 2 and congestion 2. The labeling of the complete binary treedescribed in De�nition 2.8 and Figure 2.5 induces the desired embedding.The following result is now immediately observed.Corollary 7.1 As in Theorem 7.3, a hierarchy of meshes of trees can be embedded intoPSr(N) with dilation 2 and congestion 2.There are known e�cient embeddings of the 2-dimensional mesh of trees into theshu�e exchange, since we can apply the embedding of the mesh of trees into the deBruijn graph presented by Schwabe [68] and then embed the de Bruijn graph onto the

CHAPTER 7. INTERESTING PRODUCT NETWORKS 80
Figure 7.3: Extending the complete binary tree by connecting the leaves.Finally, we present a simple but very interesting extension of the PTr(N) networkwhich contains the torus as a subgraph.Consider connecting the leaves of the complete binary tree as shown in Figure 7.3.We denote the resulting graph as X(N) which is a subgraph of the X-tree graph [21].In a modular implementation, all the nodes of a tree could be designed with the samenumber of I/O channels, and the unused channels at the leaves could be used to connectthe leaves in this fashion. Moreover, the extra channels at the roots can be used for I/Owith the external world.If we construct the product of these trees, denoted PXr(N), the resulting networkhas the power of the PTr(N). The next result shows that it also contains the torus (andhence the grid) as a subgraph.Theorem 7.7 PXr(N) contains PRr(N) as a subgraph.Proof: We show that X(N) contains a hamiltonian cycle. The claim then directlyfollows from Theorem 4.1.We �rst show that X(N) contains the following hamiltonian pathsLL-path: A path from the leftmost leaf to the rightmost leaf.LR-path: A path from the leftmost leaf to the root.Note that X(N) is symmetric and a LR-path can be converted into a path from therightmost leaf to the root (symmetric LR-path.)We proceed by induction on the number of levels in X(N). If we have two levels,X(3) is just a triangle and the above paths are contained in it. Therefore assume thatthese paths exist in the h-level tree, X(2h � 1), where h > 1.The LL-path for the (h+ 1)-level tree X(2h+1 � 1) is obtained as the LR-path in theleft subtree of the root, followed by the root, followed by the symmetric LR-path in theright subtree.The LR-path for the (h+1)-level tree X(2h+1 � 1) is obtained as the LL-path in theleft subtree of the root, followed by the LR-path in the right subtree, followed by theroot.The hamiltonian cycle for any tree X(N) is, then, obtained as the LR-path in theright subtree of the root, followed by the root, followed by the symmetric LR-path in the

CHAPTER 7. INTERESTING PRODUCT NETWORKS 79dilation and constant congestion. The following theorem presents this fact (the proof canbe found in the Appendix.)Theorem 7.5 The complete binary tree of r log(N+1)�b r2c levels can be embedded intoPTr(N), where N > 3, with dilation 3 and congestion 3.The complete binary tree that the above theorem embeds in PTr(N) is the largestpossible for r � 3 and very close to the largest (when not the largest) for small values ofr. For instance, PT9(7) has enough nodes to contain a 25-level complete binary tree andthe above theorem embeds a 23-level tree into it.The case N = 3 is not considered in Theorem 7.5 although it is specially interestingbecause PTr(3) is isomorphic to the grid PLr(3). Theorem 7.4 allows to obtain a completebinary tree subgraph of PTr(3) that is the largest possible for r � 3. For larger valuesof r it is possible to apply an approach similar to the one used in Theorem 7.5.Observe that, if the number of dimensions is bounded, the above embeddings havebounded expansion.The next result shows that complete binary tree cannot emulate its comparable-sizeproduct network with less than logarithmic dilation.Theorem 7.6 Any embedding of PTr(N) into the large-enough complete binary tree re-quires dilation
(log(r log logN)).Proof: To prove the claim we show that PTr(N) contains a subgraph, G1, and thatthere exists a supergraph of the complete binary tree, G2, such that any embedding ofG1 into G2 requires the claimed amount of dilation.G1 is the r-dimensional grid. Since T (N) contains a path of length M = 2(log(N +1) � 1), PTr(N) contains PLr(N) as a subgraph. We can select G2 as the de Bruijngraph since it contains the complete binary tree as a subgraph. It is shown in [7] thatany embedding of PLr(N) (for r > 1) into the de Bruijn graph requires a dilation of atleast
(log logM r). That gives the claimed result.We have also presented in Chapter 5 several algorithms that perform e�ciently in theproduct of complete binary trees. Some of them give better performance that the meshof trees for problems specially suited for this last network. This presents the PTr(N)network as a very interesting candidate to take over the position of the mesh of treesbetween the interconnection networks.One last fact will make this assertion stronger: both networks present same VLSIlayout area complexity. We obtained the bounds for the PGr(N) in Section 6.4. Theycan be compared with the bounds for the mesh of trees obtained in [41]. This fact impliesthat the increase in area necessary to create a network more powerful than the mesh oftrees is bounded.

CHAPTER 7. INTERESTING PRODUCT NETWORKS 78
Figure 7.2: Embedding of the complete binary tree into the two-dimensional product ofcomplete binary trees.the construction of the two-dimensional mesh of trees, i.e. all the colored nodes, red orblue, are contained in the two-dimensional mesh of trees. For induction, assume that the(r� 1)-dimensional mesh of trees has been already colored in the PTr�1(N) graph. Thecoloring rule for the r-dimensional mesh of trees is the same. That is, when going fromPTr�1(N) to PTr(N), color the internal nodes of a dimension-r tree in blue if and onlyif it has red leaves. The set of vertices colored red or blue gives the largest r-dimensionalmesh of trees contained in PTr(N).Once the largest mesh of trees is colored, successively smaller meshes of trees are thenobtained by removing all the colored vertices and coloring the remaining vertices by thesame strategy.Observe that the largest mesh of trees subgraph of PTr(N) has �(N r) nodes. Theexpansion of this embedding is, hence, constant.The next results show that PTr(N) is strictly more powerful than the similar-sizecomplete binary tree.Theorem 7.4 The complete binary tree of r(log(N + 1)� 1) + 1 levels is a subgraph ofPTr(N).Proof: For r = 2, the embedding of 5-level complete binary tree into PT2(7) is shown inFigure 7.2. Note, in particular, that the tree in the middle row constitutes the highest 3levels of the tree. The leaves of this row tree correspond to the roots of column trees. Thispattern can be recursively repeated for larger values of N in two dimensions. Assumingthat the claim is true for PTr�1(N), the embedding proof for r dimensions follows fromthe recursive construction of PTr(N).Note that, for r = 2, the tree embedded by the above method is the largest treepossible. In general, for larger values of r, larger trees can be embedded with constant

CHAPTER 7. INTERESTING PRODUCT NETWORKS 77
Figure 7.1: Embedding meshes of trees into products of complete binary trees.product of complete binary trees can emulate the torus (and, hence, the grid) very e�-ciently. The following result shows that this network is in fact more powerful than thegrid, by presenting an optimal-dilation embedding of PTr(N) onto the grid.Theorem 7.2 The optimal dilation of embedding PTr(N) into PLr(N) is d N�12 log(N+1)�2e.Proof: Section 3 in [32] presents an embedding of the complete binary tree T (N) ontothe linear array L(N) with dilation cost d N�12 log(N+1)�2e. The dilation of this embeddingis optimal as it matches the trivial lower bound obtained by comparing the respectivediameters of both networks. Then by the simple application of Corollary 4.1 the claimedembedding is obtained. Optimality of the dilation follows from the trivial lower boundobtained by comparing the diameters of the networks.We show now that meshes of trees of comparable size are subgraphs of PTr(N). Infact, the PTr(N) graph contains not just one mesh of trees, but a hierarchy of meshes oftrees as shown next.Theorem 7.3 For all i = 1; :::; log(N +1), PTr(N) contains the mesh of (N+1)=2i-leaftrees as a subgraph.Proof: Figure 7.1 shows the two-dimensional meshes of trees contained in PT2(7). Notethat in this �gure there are three meshes of trees contained, one with (N + 1)=2 = 4leaves for each tree (shown in dark nodes), one with (N + 1)=4 = 2 leaves for each tree(shown in empty nodes), and one degenerate with (N +1)=8 = 1 leaf (the central node.)In general, the largest mesh of trees contained in PTr(N) is obtained as follows. Startwith the PT2(N) graph and select the uth dimension-1 trees such that u is a leaf. Forthose trees selected, color the leaves in red and the internal nodes in blue. Do not colorthe non-selected trees. For the dimension-2 trees, color the internal nodes of a tree inblue if and only if it has red leaves. Note that this coloring scheme is consistent with

Chapter 7Interesting Product NetworksIn the previous chapters we have derived many general results for homogeneous productnetworks. In each chapter, the results obtained have been applied to several instances ofproduct networks to show the results' power.In this chapter we concentrate on three of these speci�c instances of homogeneousproduct networks and we propose them as new interconnection networks. The threenetworks to be covered are the product of complete binary trees, PTr(N), the product ofshu�e-exchange graphs, PSr(N), and the product of de Bruijn graphs, PDr(N). On topof the capabilities of these networks presented in previous chapters, we compare themhere with their respective factor network and with other popular non-product networks.We show that all of them are very powerful networks and very interesting candidates fortheir use as interconnection networks.7.1 Products of Complete Binary TreesIn previous chapters we have covered di�erent aspects of the product of complete binarytrees. We have obtained that it has logarithmic diameter, large bisection width, andbounded vertex degree when the number of dimensions is bounded. We have seen alsothat it has connectivity of r and many ways to be partitioned.The �rst result of this section shows that the number of vertex-disjoint paths betweenany two nodes in this network is larger, in some cases, than the lower bound de�ned byits connectivity. The proof of this theorem is presented in the Appendix.Theorem 7.1 Every pair of vertices in PTr(N), where r > 1, is connected by exactly mvertex-disjoint paths, where m is the minimum vertex degree of the vertices in the pair.Despite its simple structure, the product of complete binary trees have very inter-esting embedding properties. For instance, while tori and meshes of trees are powerfularchitectures, they have di�erent strengths and weaknesses. We have shown that the76

CHAPTER 6. VLSI LAYOUT COMPLEXITY 75
Low

Bis, Bif
Col

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

100 200 300 400 500 600 700 800 900 1000

W
ire

 le
ng

th

N

Butterfly and CCC 3-dimensions

Figure 6.11: Comparison of the maximum wire length bounds obtained for PB3(N) andPC3(N).by only a polylogarithmic function of N .From Table 6.3 and �gures 6.8 to 6.11, only if the number of dimensions r is boundedthe collinear method obtains bounds that match the lower bounds. In most cases itgave better bounds than the other two approaches. The only exception we have is theproduct of complete binary trees. When applicable, the use of bisectors seems to givesame maximum wire lengths as the use of bifurcators.The above analyses suggest the method based on collinear layouts as a very usefuland powerful approach to the layout problem for homogeneous product networks. Moreresearch may help in �nding normal collinear layouts with small wiring width and smallbandwidth for a variety of factor graphs.Clearly, it is still necessary to study how these results can be extended to obtainlayouts for heterogeneous product networks. If the heterogeneous product network isobtained from same-size factor graphs it is not di�cult to derive bounds similar to thosepresented by just considering the worst case. For instance, the lower bounds presentedin theorems 6.5 and 6.6 are still valid if we de�ne C as the maximum of the maximalcongestions of the factor graphs. Similarly, if f is the largest asymptotic complexitybisector of all the factor graphs, then the product graph has a O(x(r�1)=rf(x1=r))-bisector.The results for bifurcators and collinear layouts can be generalized in a similar way.

CHAPTER 6. VLSI LAYOUT COMPLEXITY 74
Low

Bis, Bif
Col

1

10

100

1000

10000

100000

1e+06

100 200 300 400 500 600 700 800 900 1000

W
ire

 le
ng

th

N

Linear array 3-dimensions

Figure 6.8: Comparison of the maximum wire length bounds obtained for PL3(N).
Low

Bis, Bif
Col

Low
Bis, Bif

Col

1

10

100

1000

10000

100 200 300 400 500 600 700 800 900 1000

W
ir

e
le

ng
th

N

Complete binary tree 2-dimensions

10

100

1000

10000

100000

1e+06

1e+07

100 200 300 400 500 600 700 800 900 1000

W
ir

e
le

ng
th

N

Complete binary tree 3-dimensions

Figure 6.9: Comparison of the maximum wire length bounds obtained for PT2(N) andPT3(N), respectively.
Low

Bif
Col

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

100 200 300 400 500 600 700 800 900 1000

W
ire

 le
ng

th

N

Shuffle exchange and de Bruijn 3-dimensions

Figure 6.10: Comparison of the maximum wire length bounds obtained for PS3(N) andPD3(N).

CHAPTER 6. VLSI LAYOUT COMPLEXITY 73on the layout area in Table 6.2. We do not know the bandwidth of these layouts toobtain a bound on the wire length. Instead, we use the wiring width and bandwidthof a collinear layout presented in [78] for the shu�e-exchange graph, which has wiringwidth O(N= log1=2N) and bandwidth O(N= log1=2N). Note, then, that the maximumwire length bounds presented in Table 6.3 for these networks may not be achievable withthe optimal area layout presented in Table 6.2.The normal collinear layout obtained by placing the levels of the buttery in orderone after the other has wiring width O(N= logN) and bandwidth O(N= logN). A similarapproach can be used for the cube-connected cycles to obtain the same bounds. Thehypercube has, as factor network, the 2-node linear array which is laid out with wiringwidth 1 and bandwidth 1 (see Figure 6.4.(a).) The Petersen graph can be laid down in anormal collinear layout with both wiring width and bandwidth O(1). Also, it is possibleto obtain a normal collinear layout for K(N) with wiring width O(N2).In �gures 6.5 to 6.11 we plot these bounds in a graphical form for those networksconsidered more interesting. In these �gures the x axis shows the value of N (the num-ber of nodes in the factor graph) while the y axis shows the value of the bounds on alogarithmic scale, with all the constant factors neglected (we ignore the
 and the O.)The curves have been labeled with \Low" (lower bound), \Bis" (upper bound obtainedby using bisectors), \Bif" (upper bound obtained by using bifurcators), and \Col" (up-per bound obtained by using collinear layouts.) In the �gures we �x the value of r to3, representing also the value r = 2 when interesting. For larger values of r the shapeof the �gures will remain practically the same, since the di�erence between bounds is afunction of N . The area bounds for the linear array are not plotted for 2 dimensionsfor the triviality of the layout in this case. For more dimensions all the approaches yieldarea-optimal layouts and the plot is not interesting. The bounds are not plotted neitherfor the hypercube nor for the product of Petersen graphs, since N is �xed for both net-works. Also, we did not plot the case for products of complete graphs since there is onlyone upper bound result. For hypercubes and products of Petersen and complete graphsthe area of collinear layouts are optimal, but in maximum wire length they di�er fromthe lower bound by a factor of r.From the results presented in Table 6.2 and �gures 6.5 to 6.7, the proposed methodbased on collinear layouts seems to generate layouts with optimum area in most of thecases. Only for products of complete binary trees the layout area is not minimum, andit is not possible to reach an optimal area layout for this network using this method,since we would need a normal collinear layout for the complete binary tree with constantwiring width. The layouts obtained by using bisectors (when applicable) are also quitearea-e�cient, since they have optimal area for more than two dimensions in the studiedcases (see �gures 6.5 and 6.7.) In fact, the layout obtained for the product of completebinary trees is also optimal for 2 dimensions since, as we see in Chapter 7, this networkhas the mesh of trees as a subgraph, which requires area
(N2 log2N) for two dimensions[41]. The layouts obtained by using bifurcators are not always area-optimal, but are o�

CHAPTER 6. VLSI LAYOUT COMPLEXITY 72
Low

Bis, Bif, Col

Low, Bis, Bif
Col

100

1000

10000

100000

1e+06

1e+07

1e+08

100 200 300 400 500 600 700 800 900 1000

A
re

a

N

Complete binary tree 2-dimensions

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

1e+13

1e+14

100 200 300 400 500 600 700 800 900 1000

A
re

a

N

Complete binary tree 3-dimensions

Figure 6.5: Comparison of the area bounds obtained for PT2(N) and PT3(N), respec-tively.
1

1e+10

1e+20

100 200 300 400 500 600 700 800 900 1000

A
re

a

N

Shuffle exchange and de Bruijn 3-dimensions

Low, Col
BifFigure 6.6: Comparison of the area bounds obtained for PS3(N) and PD3(N).

1

1e+10

1e+20

100 200 300 400 500 600 700 800 900 1000

A
re

a

N

Butterfly and CCC 3-dimensions

Low, Bis, Col
Bif

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

100 200 300 400 500 600 700 800 900 1000

A
re

a

N

Butterfly and CCC 2-dimensions

Low, Col
Bis, BifFigure 6.7: Comparison of the area bounds obtained for PB2(N) and PC2(N), andPB2(N) and PC2(N), respectively.

CHAPTER 6. VLSI LAYOUT COMPLEXITY 716.4 Application to Speci�c NetworksIn tables 6.2 and 6.3 we have compiled the bounds obtained by applying the presentedresults to several networks. In both tables UN stands for \unknown" and N.A. standsfor \not applicable." Table 6.2 presents the bounds on layout area. The upper boundsmarked in this table with *" are optimal. Table 6.3 presents the bounds on maximumwire length. The upper bounds marked in this table with *" are optimal if r is bounded.We �rst present how these bounds have been obtained.The second column in both tables presents the lower bounds obtained by direct ap-plication of theorems 6.5 and 6.6. The value of the maximal congestion for all the factornetworks was already obtained in Section 3.3.The third and fourth columns of the tables present upper bounds obtained frombisectors of the factor graphs. It is easy to observe that the linear array and the completebinary tree have O(1)-bisectors. By applying Corollary 6.1 the presented bounds aredirectly obtained. There have not been found, as far as we know, tight bisectors for theshu�e-exchange and the de Bruijn graphs. Thus we present the corresponding bounds asunknown. We can easily show that the (n2n)-node buttery can be bisected by removingO(2n) edges, resulting in two butteries with one less level and several isolated nodes.Therefore we conclude that the buttery has a O(x= log x)-bisector. Similarly it can beshown that the cube-connected cycles has a O(x= log x)-bisector. To obtain the boundson wire length we use x= log x = x� for some � > 0 and, therefore, � > 0 in Corollary 6.1for both networks. Since the hypercube and the product of Petersen graphs can onlygrow by increasing the number of dimensions, they are considered here as networks withunbounded number of dimensions, and the bisector approach can not be applied to them.Similarly, this approach can not be applied to the product of complete graphs sinceK(N)has not bounded vertex degree.The �fth and sixth columns contain the bounds obtained from bifurcators of the factornetworks. The linear array and the complete binary tree have 0-special bifurcators. Thevalue of the bifurcators for the shu�e-exchange and de Bruijn networks are obtained fromknown layouts of area O(N2= log2N) [41], that implies the existence of O(N= logN)-bifurcators for these networks [9]. It is easy to see that the buttery and the cube-connected cycles have 1-special bifurcators. We then apply corollaries 6.2 and 6.3 toobtain the bounds on layout area and maximumwire length for all these networks. Again,the hypercube and the product of complete and Petersen graphs are not considered.The last column of the tables present the upper bounds obtained from collinear layoutsfor the factor networks. If the nodes of the linear array are laid down in a line we obtaina collinear layout with wiring width 1 and bandwidth 1. The complete binary tree has acollinear layout with wiring width O(logN) and bandwidth O(N), which can be obtainedby just labeling the nodes in in-order. For the shu�e-exchange and de Bruijn graphs wecan apply lemmas 6.3 and 6.4 to their optimal O(N= logN) �O(N= logN) area layouts[41] to obtain normal collinear layouts with wiring width O(N= logN), hence the bounds

CHAPTER 6. VLSI LAYOUT COMPLEXITY 70G(N) Area Max. Wire Length ConditionC: max. congestion
(N2(r+1)=C2)
(N r+1=Crd)d: diameterf(x)-bisector O(N2f2(N) log2N) r = 2O(N2(r�1)f2(N)) r > 2O(x�)-bisector O(N2 log2N) O(N logN= log logN) � = 0 and r = 2O(N2(r+��1)) O(N r+��1) OtherwiseF -bifurcator O(N2(r�1)F 2 log2(N=F)) O(N r�1F log(N=F)log log(N=6(2+p2)F))�-special bifurcator O(N2 log2N) O(N logN= log logN) � = 0 and r = 2O(N2(r+��1)) O(N r+��1) Otherwisew: wiring width O(w2N2(r�1)) O(bwN r�2)b: bandwidthTable 6.1: Results on VLSI layout complexity obtained.Upper bound for the area of product networkFactor Lower Bisector Bisector Bifurcator Bifurcatornetwork bounds (r = 2) (r > 2) (r = 2) (r > 2) CollinearL(N)
(N2(r�1)) O(N2 log2 N) O(N2(r�1)) * O(N2 log2N) O(N2(r�1)) * O(N2(r�1)) *T (N)
(N2(r�1)) O(N2 log2N) * O(N2(r�1)) * O(N2 log2N) * O(N2(r�1)) * O(N2(r�1) log2 N)S(N)
(N2rlog2N) UN O(N2r log2 logNlog2 N) O(N2r= log2N) *D(N)
(N2rlog2N) UN O(N2r log2 logNlog2 N) O(N2r= log2N) *B(N)
(N2rlog2N) O(N4) O(N2rlog2 N) * O(N2r) O(N2r= log2N) *C(N)
(N2rlog2N) O(N4) O(N2rlog2 N) * O(N2r) O(N2r= log2N) *Q1
(22(r�1)) N.A. N.A. O(22(r�1)) *P (10)
(102(r�1)) N.A. N.A. O(102(r�1)) *K(N)
(N2(r+1)) N.A. N.A. O(N2(r+1)) *Table 6.2: Bounds on the layout area obtained by application of the presented methods.Upper bound for the wire length of product networkFactor Lower Bisector Bisector Bifurcator Bifurcatornetwork bounds (r = 2) (r > 2) (r = 2) (r > 2) CollinearL(N)
(N r�2=r) O(N logNlog logN) O(N r�1) O(N logNlog logN) O(N r�1) O(N r�2) *T (N)
(Nr�1r logN) O(N logNlog logN) O(N r�1) O(N logNlog logN) O(N r�1) O(N r�1 logN)S(N)
(Nrr log2 N) UN O(N r log logNlogN log log logN) O(N r= logN)D(N)
(Nrr log2 N) UN O(N r log logNlogN log log logN) O(N r= logN)B(N)
(Nrr log2 N) O(N r) O(N r) O(N r= log2N) *C(N)
(Nrr log2 N) O(N r) O(N r) O(N r= log2N) *Q1
(2r�2=r) N.A. N.A. O(2r�2) *P (10)
(10r�2=r) N.A. N.A. O(10r�2) *K(N)
(N r+1=r) N.A. N.A. O(N r+1) *Table 6.3: Bounds on the wire length obtained by application of the presented methods.

CHAPTER 6. VLSI LAYOUT COMPLEXITY 69enough connection points in each side of the node when needed. Figure 6.4.(b) presentsthis initial situation for our example graph.For each row of nodes we apply the following iterative process. We start by creatingw new rows above the row of nodes. The nodes in the row are divided in N dr=2e�1 groupsof N adjacent nodes each, and the nodes in each group are connected using the createdrows with the wires laid down as speci�ed by the normal collinear layout of G(N). Thiscompletes the connections for the �rst dimension of the product graph. We subsequentlycreate wN new rows, divide the nodes in a row into N dr=2e�2 groups of N2 adjacent nodeseach, and use the wN new rows in groups of w each to connect N nodes of the seconddimension. These nodes are N nodes apart from one another.In the ith iteration we create wN i�1 new rows, divide the nodes in N dr=2e�i groups ofN i nodes each, and connect sets of N nodes in the ith dimension, each N i�1 nodes apartfrom one another.This process is applied dr=2e times for each row of nodes. The total number of wiringrows created is wPdr=2e�1i=0 N i. This is the distance between two rows of processors. Twoadjacent processors in the same row are still touching each other. Figure 6.4.(c) presentsthe example layout after completion of the above process. To obtain this layout weapplied the iterative step twice.The same iterative process can be applied br=2c times to connect the columns. As aresult, we �nd that the columns of processors are at distance wPbr=2c�1i=0 N i. This com-pletes the proof. Figure 6.4.(d) shows the �nal layout obtained for our example graph.From this theorem we can obtain bounds on the area and maximum wire length forthe layout.Corollary 6.4 If G(N) has a normal collinear layout with wiring width w and bandwidthb, then PGr(N) can be laid out in an area of dimensions �(wN r�1) � �(wN r�1) withmaximum wire length �(bwN r�2).Proof: The length of the layout obtained from the above theorem along the horizontaldimension is N dr=2e(�dr=2e+wPbr=2c�1i=0 N i). Since w � �=2,Pbr=2c�1i=0 N i = �(N br=2c�1),and N br=2c�1 � dr=2e for N � 2 and r � 2, then this length is �(wN r�1). The lengthalong the vertical dimension is N br=2c(�dr=2e + wPdr=2e�1i=0 N i) = �(wN r�1). Simi-larly, the length of the longest edge is at most 2wPdr=2e�1i=0 N i + b(N dr=2e�1(�dr=2e +wPbr=2c�1i=0 N i)) = �(bwN r�2).In Table 6.1 we have compiled the results obtained in this chapter.

CHAPTER 6. VLSI LAYOUT COMPLEXITY 68
(a)

(b) (c) (d)Figure 6.4: Layout for the 3-dimensional hypercube.Since the N -node directed complete graph can be embedded onto the graph G(N) withcongestion C, it follows that any embedding of G(N) onto L(N) requires congestion atleast N2=2C if N is even, or at least (N2 � 1)=2C if N is odd, since otherwise we couldobtain an embedding of the directed complete graph with congestion smaller than itsmaximal congestion.Since the congestion of any embedding of G(N) onto L(N) is a lower bound on thenumber of rows needed to route the edges of G(N), the result follows.The Layout Method for Product GraphsThe following theorem represents the main result of this section. The proof gives analgorithm to obtain the layout for a product graph from a normal collinear layout of itsfactor graph.Theorem 6.12 If G(N) has a normal collinear layout with wiring width w, then PGr(N)has a layout with square nodes of side �dr=2e placed regularly in N dr=2e columns of N br=2cnodes each, where two adjacent columns of nodes are at distance wPbr=2c�1i=0 N i and twoadjacent rows of nodes are at distance wPdr=2e�1i=0 N i.Proof: We show the iterative process that can be used to obtain the desired layout.The proof is illustrated in Figure 6.4, which presents the construction of a layout forthe 3-dimensional hypercube. Figure 6.4.(a) presents a normal collinear layout for the2-node linear array.Initially, we place the N r nodes of PGr(N) in the layout as squares of side �dr=2e ina grid fashion with N dr=2e columns of nodes and N br=2c rows of nodes. Each node touchesits neighbor nodes in the layout. The size of the nodes will guarantee that there are

CHAPTER 6. VLSI LAYOUT COMPLEXITY 67side across the columns just created. Figure 6.3.(c) presents the 2 new columns createdin this step. Then, move u to the bottom rows, after resizing it to �u ��. Finally, usethe newly created columns as well as the rows originally allocated to u to reroute theedges from the bottom rows. Since u had at least �u rows and we have �u columns, thisrerouting can be done. Figure 6.3.(d) presents the �nal result for our example.This ends the transformation. Note that the total number of added columns isPu2V �u, where V is the set of nodes of G(N) and, therefore, the length of the lay-out is O(l +N�).The above lemma shows that any layout can be transformed into a seminormalcollinear layout with wiring width of the same order as the width of the original lay-out. While the transformation increases the length of the collinear layout, we will seethat it is the width of the normal collinear layout which dominates the layout area com-plexity for the product graph. The collinear layout obtained can now be compressed toobtain a normal collinear layout with at most same wiring width. This is shown in thefollowing lemma.Lemma 6.4 If G(N) has a seminormal collinear layout with wiring width w and band-width b, it also has a normal collinear layout with wiring width at most w and bandwidthb.Proof: The original layout gives us a possible labeling (i.e. the order in which the nodesof G(N) can be placed) to obtain the desired wiring width w. This is all we need forthe purpose of obtaining the desired normal layout. We start by placing the N nodestouching each other along a straight line. The ith node in this line corresponds to the ithnode in the seminormal collinear layout. We then connect these nodes by three-segmentwires (two vertical and one horizontal) as required by the original layout.Since there is a seminormal collinear layout of width w that uses the same node order,we can obtain a layout which has at most w rows used for wires. The bandwidth of thelayout remains the same.Note that, in the above obtained layout, the length of the longest wire is at most2w + b�, where b is the bandwidth of the layout.We �nish this section by presenting a lower bound on the wiring width of any normalcollinear layout for arbitrary graphs.Theorem 6.11 If the maximal congestion of G(N) is C then the wiring width for anynormal collinear layout of G(N) is at least N2=2C if N is even, and (N2 � 1)=2C if Nis odd.Proof: Note �rst that any embedding of the N -node directed complete graph onto thelinear array L(N) requires congestion N2=2 if N is even, and (N2 � 1)=2 if N is odd.

CHAPTER 6. VLSI LAYOUT COMPLEXITY 66
(b)

(a)

(c) (d)Figure 6.3: Transformation of a compact layout into a collinear layout.isolated nodes, and at step i at most F=p2i edges are removed to divide the graph, fori = 0; :::; 2 logF . Then, the number of rows needed to route the edges of G(N) are atmost P2 logFi=0 F=p2i = O(F).Finally, we present a general method to obtain a normal collinear layout from anarbitrary layout. The following result shows that there is always a seminormal collinearlayout with small wiring width.Lemma 6.3 If G(N) has a layout of length l and with w, G(N) also has a seminormalcollinear layout of length O(l +N�) and wiring width O(w).Proof: We prove the lemma by showing how to transform the given layout into a semi-normal collinear layout with the claimed dimensions. The transformation is illustrated inFigure 6.3, where we show only the process for one node of the layout. The appearanceof this node in the original layout is shown in Figure 6.3.(a).We �rst transform the nodes of the given layout by adding enough rows so that eachnode uses at least �u rows, where �u is the vertex degree of the node u being transformed.The width of the resulting layout is at most O(w). Figure 6.3.(b) shows the result ofenlarging our example node to use 2 rows.We subsequently create � new rows at the bottom of the layout. We will eventuallymove all the nodes in the layout to these new rows. No other rows are added in the restof the transformation process, therefore the wiring width of the new layout will be O(w).In our example we assumed � = 3 and then, at the bottom of Figure 6.3.(c), the 3 newrows introduced are shown.Then, the following step is applied iteratively until all the nodes are in the createdbottom rows and we have a seminormal collinear layout. The step searches from left toright for the �rst column with tiles assigned to nodes not yet moved. This column canhave tiles from several nodes. If so, we take one node arbitrarily.Let u be the node we have chosen. Create �u new columns on the left side of u.When creating these columns do not stretch the end of the wires incident to u in that

CHAPTER 6. VLSI LAYOUT COMPLEXITY 65also on the bandwidth of the collinear layout. Below, we present several ways toobtain normal collinear layouts with small wiring width for arbitrary graphs.3. It is applicable to any graph regardless of the vertex degree, while the applicabil-ity of bisector or bifurcator-based approaches are limited to graphs with boundeddegree.4. The aspect ratio of layouts is always O(1), which is a desirable characteristic forfabrication.Methods for Obtaining Normal Collinear LayoutsIn this section we are interested in obtaining normal collinear layouts with small wiringwidth and small bandwidth, because these are the properties that inuence the char-acteristics of the layout of the product graph that we obtain. We can devise severalmethods to obtain normal collinear layouts for any graph.First, observe that any graph G(N) has a normal collinear layout of wiring width atmost 12Pu2V �u, where V is the set of nodes of G(N), since this is the number of wiresin the layout and each wire requires no more than one row.Second, the problem of �nding an e�cient collinear layout is closely related to theclass of problems known as \graph labeling" [16]. Given a way of labeling the nodes ofan N -node graph with integer labels 1; :::; N (or, equivalently, given a way of placing thenodes of the graph on a line), the maximum distance between two connected nodes isthe bandwidth of the labeling, while the maximum number of edges that cross a verticalline placed between any two nodes is the cutwidth of the labeling. Thus, if there is anembedding of a graph G(N) onto the linear array L(N) with bandwidth b and cutwidth cit is trivial to obtain a normal collinear layout for G(N) with wiring width c, bandwidthb, and longest edge of length O(b� + c). For an arbitrary graph, we can obtain a label-ing which minimizes the bandwidth and the cutwidth by using dynamic programmingalgorithms, or heuristics.Third, it is shown in [44] how to construct normal collinear layouts for a graph G(N)with a f(x)-separator. The layout has wiring width O(f(N) logN) in general but, iff(x) =
(x�) for � > 0, then the wiring width is O(f(N)). For graphs with F -bifurcatorswe obtain a similar result in the following lemma.Lemma 6.2 If G(N) has a F -bifurcator, then it has a normal collinear layout withwiring width O(F).Proof: The construction of the layout is similar to the construction shown in [44] forseparators. We use a divide-and-conquer process that divides the graph into two sub-graphs, obtains a collinear layout for each, and reconnects the two layouts by adding atmost as many new rows as edges were removed in the partition step. From the de�ni-tion of bifurcator, the division process is applied at most 2 log F times before we obtain

CHAPTER 6. VLSI LAYOUT COMPLEXITY 64and j to count the partitions within an application of the basic process, varying j from0 to r� 1. The absolute count of partition steps for the whole graph is, then, k = ir+ j.In the ith application of the basic process the size of the factor subgraphs that weare considering is m = N=2i and we remove at most O((N=2i)�) edges to partition thissubgraph. Then, the kth absolute partition step removes at most O((N=2i)�(N=2i)r�j�1(N=2i+1)j) edges. We can write(N=2i)�(N=2i)r�j�1(N=2i+1)j = N r+��12k�i(1��) :Since k � i(1� �) � k=2 for r � 2 we can conclude that PGr(N) has a O(N r+��1)-bifurcator. We still need to show in which cases this is a (r + � � 1)-type B bifurcator.Note that N r+��12k�i(1��) = (N r)1�(1��)=r(2k)1�i(1��)=k :Since (1� �)=r � i(1� �)=k then 1 � i(1 � �)=k � 1 � (1� �)=r and, therefore,(N r)1�(1��)=r(2k)1�i(1��)=k = O((N r=2k)1�(1��)=r)where 1 � (1 � �)=r > 1=2 (i.e. we have a type B bifurcator) if either r > 2, or r = 2and � > 0.We can now apply theorems 6.3 and 6.4 combined with this theorem to obtain thefollowing corollary.Corollary 6.3 If G(N) has a �-special bifurcator then PGr(N) can be laid out in anarea of O(N2 log2N) with maximum wire length O(N logNlog logN) if r = 2 and � = 0, or inan area of O(N2(r+��1)) with maximum wire length O(N r+��1) otherwise.6.3.3 Upper Bounds Based on Collinear LayoutsIn this section we present another approach to obtain layouts for product networks. Weuse a collinear layout for the factor network to obtain a layout for the homogeneousproduct network. This collinear approach for laying out product graphs has severaladvantages:1. It gave the optimal area layouts for all the cases we considered (with only oneexception), and wire lengths were quite close to optimal.2. It depends on obtaining a collinear layout for the factor graph, which is much easierto obtain than good bisectors or bifurcators. The area of the layout only dependson the wiring width of the collinear layout. The maximum wire length depends

CHAPTER 6. VLSI LAYOUT COMPLEXITY 63the worst case, we take the larger of the two obtained subgraphs. We can partition thissubgraph by dimension 2 by removing at most HdN=2eN r�2 edges. This value is smallerthan HN r�1=p2.We can continue in this way partitioning the subgraphs by each dimension. Whendividing the largest subgraph by dimension i we remove at most HdN=2ei�1N r�i edges,that is smaller thanHN r�i=p2i�1. After dividing by dimension r each subgraph obtainedhas at most dN=2e nodes along each dimension.If we start the process again, the next division will remove at most HdN=2er�1=p2edges, that is smaller than HN r�1=p2r. Therefore, the process can be repeated withoutexceeding the maximum number of edges allowed by the de�nition of bifurcator.As in the proof of Theorem 6.7, we can apply the partition process just described toeach of the 2r subgraphs of PGr(N) obtained, to the subgraphs obtained from them, andso on, until all the nodes are isolated. By repeating this process at most logN +1 timesall the nodes in PGr(N) will be isolated, and the theorem follows.We recall here that Bhatt and Leighton [9] showed that if G(N) can be laid out in anarea A it has a pA-bifurcator. Thus, if G(N) can be laid out in an area A then PGr(N)has a N r�16(2 +p2)pA-bifurcator. From Theorem 6.9 we can obtain bifurcator-basedbounds for the area and maximum wire length by using Theorem 6.3.Corollary 6.2 If G(N) has a F -bifurcator then PGr(N) can be laid out in an area ofO(N2(r�1)F 2 log2(N=F)) with maximum wire length O(N r�1F log(N=F)log log(N=6(2+p2)F)).The above theorem and corollary are universally applicable. However, as Bhatt andLeighton [9] noted, there are graphs with special characteristics which allow to improvethe above bounds. This fact is reected in the following results.Theorem 6.10 If G(N) has a �-special bifurcator then PGr(N) has a O(N r+��1)-bifurcator. This is a (r + � � 1)-type B bifurcator if either r > 2, or r = 2 and � > 0.Proof: Let N be a power of two for simplicity. From Theorem 5 in [9] we knowthat G(N) has a partition process where each partition in the ith partition step bi-sects the corresponding graph without removing more than 6Pps=i O((N=2s)�) edges, fori = 0::: logN�1, and p is the number of steps of the original partition process. This sum-mation is a decreasing geometric series, that is essentially on the order of its �rst term.Then, G(N) has a partition process such that each partition in the ith partition stepbisects the corresponding graph without removing more than 6O((N=2i)�) = O((N=2i)�)edges, for i = 0::: logN � 1.The partition process is similar to the one presented in the proof of Theorem 6.9. Weapply a basic process logN times, partitioning the graphs r times in each application.We will use i to count the applications of the basic process, i varying from 0 to logN �1,

CHAPTER 6. VLSI LAYOUT COMPLEXITY 62the proof is complete.Once we obtain a bisector for product networks we are ready to apply it to obtainbounds on the layout parameters. We can use Theorem 6.1 to obtain the following result.Theorem 6.8 If G(N) has a f(x)-bisector then PGr(N) can be laid out in a square ofside O(Nf(N) logN) when r = 2, or side O(N (r�1)f(N)) when r > 2.Proof: In Theorem 6.7 we have obtained that PGr(N) has a O(x(r�1)=rf(x1=r))-bisector.Since PGr(N) has N r nodes, we can obtain the value of the summation presented in The-orem 6.1 as Pr log4Ni=0 2iO((N r=4i)(r�1)=rf(N=4i=r)) = O(f(N)Pr log4Ni=0 2i(Nr4i)(r�1)=r) sincef(x) is a monotonically non-decreasing function. The value of this last summation isO(N logN) when r = 2, or O(N r�1) when r > 2 [80]. Therefore, the value of the �rstsummation is O(Nf(N) logN) when r = 2, or O(N r�1f(N)) when r > 2, and the claimfollows.The most studied kind of bisectors has been O(x�)-bisectors, for bounded �. Theo-rem 6.2 can be directly applied to product networks to obtain the next corollary.Corollary 6.1 If G(N) has a O(x�)-bisector, for bounded �, then PGr(N) can be laidout in an area of O(N2 log2N) with maximum wire length O(N logN= log logN) when� = 0 and r = 2, or in an area of O(N2(r+��1)) with maximum wire length O(N r+��1)otherwise.6.3.2 Upper Bounds Based on BifurcatorsThe following theorem and its corollary present the initial general results of this section.After these we present additional results applicable to graphs with �-special bifurcators,which yield tighter bounds.Theorem 6.9 If G(N) has a F -bifurcator then PGr(N) has a N r�16(2+p2)F -bifurcator.Proof: From Theorem 6 in [9] we know that if G(N) has a F -bifurcator then it has aH = 6(2+p2)F -bifurcator (balanced bifurcator) that bisects the graph at each partition.Then, after at most logN+1 partitionsG(N) is transformed into N isolated nodes. Alongthe rest of the proof we will denote 6(2 +p2)F as H for brevity.The proof is very similar to the proof of Theorem 6.7. We show that given PGr(N) wecan obtain 2r subgraphs, each being the r-dimensional (possibly heterogeneous) productof factor graphs with H=p2-bifurcators and at most dN=2e nodes.We initially consider dimension 1. To partition PGr(N) we can bisect each G(N)-subgraph in this dimension, removing no more thanHN r�1 edges in total. Each dimension-1 G(N)-subgraph is so divided into a bN=2c-node and a dN=2e-node subgraphs. To follow

CHAPTER 6. VLSI LAYOUT COMPLEXITY 61Case N odd: The logic in this case is similar to the logic in the above case, but wemust be careful because by simply bisecting each subgraph along a dimension weare not bisecting the whole graph. What we do in this case is breaking each G(N)-subgraph in a given dimension into two subgraphs, with (N �1)=2 nodes each, andone isolated node. As the isolated nodes are connected between themselves by theother dimensions, we also remove these connections and distribute the so obtainedisolated nodes evenly between the two large connected subgraphs.We can initially take dimension 1. By bisecting each dimension-1 G(N)-subgraphwe remove no more than N r�1f(N) edges and we obtain two subgraphs withN r�1(N � 1)=2 and N r�1(N + 1)=2 nodes, respectively. Clearly, PGr(N) has notbeen bisected. Now, we can take the subgraph with the larger number of nodesand isolate one node along dimension 1 from each of the dimension-1 subgraphs,the same node in each subgraph. Since we are assuming that G(N) has boundedvertex degree, we can do so by removing a bounded number of edges from eachdimension-1 subgraph. This leads to a total of O(N r�1) edges removed.Now we have two subgraphs with N r�1(N � 1)=2 nodes each, and a (r � 1)-dimensional subgraph, isomorphic to PGr�1. From Lemma 6.1, the factor graphG(N) that generates the (r�1)-dimensional subgraph has no more than O(Nf(N))edges. Therefore we can isolate the nodes of this subgraph by removing at most(r � 1)N r�2O(Nf(N)) = O(N r�1f(N)) edges.As a result of the above process we have two subgraphs with the same number ofnodes and some isolated nodes. If we distribute the isolated nodes evenly betweenthe two subgraphs our bisection is done. The total number of edges removed hasbeen N r�1f(N) + O(N r�1) + O(N r�1f(N)) = O(N r�1f(N)) from the initial N r-node graph.This process can be applied to each dimension as in the case of N even. In eachapplication O(N r�1f(N)) edges are removed from a �(N r)-node graph. After thegraph has been bisected in this way along each dimension, we have 2r disjoint r-dimensional subgraphs, each being the product of ((N � 1)=2)-node graphs withf(x)-bisector, plus several isolated nodes distributed evenly between them.We have now 2r subgraphs of PGr(N) each being the r-dimensional product of factorgraphs with bN=2c nodes and f(x)-bisectors. Note that in the above described processwe only use the fact of PGr(N) having the same number of nodes along each dimensionand of each factor graph having a f(x)-bisector. Since the obtained subgraphs full�l theserequirements, the described process can be applied again to each of them. Subsequently,the subgraphs obtained from them will also full�l the requirements, and the process canbe applied to each of them, and so on, until all the nodes are isolated.Since in each bisection of the whole process the number of edges removed does notexceed the limits imposed by the de�nition of g(x)-bisector for g(x) = O(x(r�1)=rf(x1=r)),

CHAPTER 6. VLSI LAYOUT COMPLEXITY 60Proof: We initially present the following lemma that shall be used in the proof.Lemma 6.1 If G(N) has a f(x)-bisector, then it has at most O(Nf(N)) edges.Proof: Assume for simplicity that N is a power of 2. By the de�nition of bisector, G(N)can be divided into two subgraphs by removing no more than f(N) edges. Then, weobtain 2 subgraphs with N=2 nodes each, which can be bisected by removing no morethat f(N=2) edges from each. After i bisections of this kind, we obtain 2i subgraphs withN=2i nodes each, which in turn can be bisected by removing no more that f(N=2i) edgesfrom each. After applying the bisection process logN times we obtain N isolated nodes.The maximum number of edges removed in the whole process can be easily computedas, f(N) + 2f(N=2) + 22f(N=22) + ::: + 2logN�1f(N=2logN�1) = PlogN�1i=0 2if(N=2i) =O(Nf(N)).The proof now shows how to divide PGr(N) into isolated nodes by repeatly applyingbisections that respect the de�nition of O(x(r�1)=rf(x1=r))-bisector.Initially, we show how to divide PGr(N) into 2r disjoint subgraphs and, possibly,some isolated nodes. This process is done in r bisection steps, each of which removesO(N r�1f(N)) edges from its corresponding graph. At the end of the process, each ofthe obtained subgraphs is the r-dimensional (possibly heterogeneous) product of factorgraphs with bN=2c nodes and f(x)-bisectors.A partition process similar to the one applied to PGr(N) can then be applied to eachof these subgraphs, to the subgraphs obtained from them, and so on, until all the nodesare isolated.The basic partition process considers two cases, when N is even and when N is odd.Case N even: By de�nition of bisector, each of the G(N)-subgraphs in each dimensioncan be bisected by removing no more than f(N) edges. We can initially consideronly the G(N)-subgraphs in dimension 1. PGr(N) can be divided into two sub-graphs with the same number of nodes in each by bisecting each of the dimension-1G(N)-subgraphs. As there are N r�1 such subgraphs, we have removed no morethan N r�1f(N) edges from the N r-node graph.Now, we can take one of the two subgraphs of PGr(N) obtained and divide it intotwo subgraphs with same number of nodes by bisecting each of its dimension-2 G(N)-subgraphs. The number of edges removed this time is no more thanN r�1f(N)=2 from a graph with N r=2 nodes.We can continue this process, bisecting the obtained subgraphs along each dimen-sion. When bisecting the subgraphs by dimension i we are removing no more thanN r�1f(N)=2i�1 = O(N r�1f(N)) edges from N r=2i�1 = �(N r)-node graphs.After bisecting the subgraphs by dimension r we obtain 2r disjoint subgraphs, eachbeing the r-dimensional product of (N=2)-node graphs with f(x)-bisectors (becausethey are bisections of graphs with f(x)-bisectors.)

CHAPTER 6. VLSI LAYOUT COMPLEXITY 59two parameters anymore, since the maximal congestion gives us the same bounds thatwe can obtain from them.Now we present a lower bound on the length of the longest wire in any layout of aproduct graph.Theorem 6.6 If the maximal congestion of G(N) is C and its diameter is d, then thelength of the longest wire in any layout of PGr(N) is at least
(Nr+1Crd).Proof: Theorem 5-2 in [41] shows that any layout of a graph with diameter D andminimum layout area A has some wire of length at least A1=2=3D. From Theorem 3.1,the diameter of PGr(N) is D = rd and, from Theorem 6.5, its layout area is at least
(N2(r+1)C2). Therefore, we can conclude that any layout of PGr(N) has some wire oflength at least
(Nr+1=C)3rd =
(Nr+1Crd).6.3 Upper BoundsIn this section we �rst present upper bounds obtained by traditional frameworks, namelybisectors and bifurcators. We show that, given a bisector or a bifurcator for the factorgraph, we can obtain a bisector or a bifurcator for the product graph. Since theseframeworks are only applicable to networks with bounded vertex degree, we will assumethat the factor graph has bounded vertex degree and that the number of dimensions ofthe product network is also bounded. These assumptions are not very restrictive if weare dealing with factor networks that can grow without increasing the vertex degree.Sherlekar and J�aJ�a [70, 71] investigated the use of separators and bifurcators to obtaine�cient layouts for unbounded-vertex-degree graphs. However, the kinds of separatorsand bifurcators they use are so restrictive that it does not seem possible to obtain simplegeneral results for product graphs by using them.Subsequently, we present another approach that is universally applicable and doesnot have any restriction on the vertex degree or on the number of dimensions. Thismethod of obtaining e�cient layouts for product networks is based on the existence ofe�cient collinear layouts for the factor networks. We show that it is always possible to�nd reasonably e�cient collinear layouts for any network and present a speci�c techniqueto do so.6.3.1 Upper Bounds Based on BisectorsThe following theorem presents the basic result of this section.Theorem 6.7 If G(N) has a f(x)-bisector, then PGr(N) has a O(x(r�1)=rf(x1=r))-bisector.

CHAPTER 6. VLSI LAYOUT COMPLEXITY 58
Figure 6.2: Normal collinear layout for K(5).De�nition 6.7 The wiring width of a collinear layout is the number of rows used toroute the wires in the layout.The value of the wiring width is always the width of the layout minus the maximumvertex degree �.De�nition 6.8 The bandwidth of a collinear layout is the maximum distance, in numberof nodes, between any two connected nodes.The maximumwire length is closely related to the bandwidth of a layout as we discusslater. Figure 6.2 presents a normal collinear layout for K(5) with wiring width 6 andbandwidth 4.6.2 Lower BoundsIn this section we obtain lower bounds on the layout area and maximum wire lengthrequired by any layout of PGr(N).In [78], Thompson showed that the square of the bisection width is a lower bound(within a constant factor) on the wire area required by any layout of a graph. Similarly,Leighton [41] presented the crossing number as a lower bound on the wire area of anylayout of a graph. Then, we can use theorems 3.9 and 3.10 to prove the following theorem.Theorem 6.5 If the maximal congestion of G(N) is C then the layout area of PGr(N)is at least
(N2(r+1)C2).This result emphasizes the importance of the maximal congestion as a parameterof a graph. Previously, the two approaches to obtain lower bounds on the layout area,bisection width and crossing number, were considered independent from each other. Here,we have shown the maximal congestion as a link between both approaches, which allowto obtain tight lower bounds on the area. In fact, in many cases we do not need the other

CHAPTER 6. VLSI LAYOUT COMPLEXITY 57De�nition 6.3 A n-node graph has a �-special bifurcator, 0 � � � 1, if it has aO(maxfpn; n�g)-bifurcator such that no more than O((n=2i)�) edges are removed ineach partition at the ith step of the partition process, where i = 0 initially.Note that when � = 1=2 we have the de�nition of pn-bifurcator, but for � 6= 1=2 thepartition process de�ned is more restrictive than the one implied in De�nition 6.2. Wenow de�ne a subclass of graphs with �-special bifurcators. This subclass was originallyconsidered in [9].De�nition 6.4 A graph has a �-type B bifurcator if it has a �-special bifurcator, where� > 1=2.From the value of the bifurcator of a graph, there have been presented the followingresults in [9].Theorem 6.3 A n-node graph with a F -bifurcator can be laid out in an area of O(F 2log2 nF) with maximum wire length of O(F log nFlog log nF).Theorem 6.4 A n-node graph with a �-type B bifurcator can be laid out in an area ofO(n2�) with maximum wire length of O(n�).Again, the bifurcator framework is restricted to be used with bounded degree net-works.6.1.4 Collinear LayoutsThe last approach to obtain layouts for homogeneous product networks we investigate isbased on the existence of e�cient collinear layouts of the factor graph. A VLSI layoutis called collinear if all the nodes are placed along a straight line. We will use collinearlayouts of the factor graph to generate layouts for the product graph.To be able to use them, we impose several restrictions on the collinear layouts. Weassume that the nodes are aligned horizontally.De�nition 6.5 A collinear layout is seminormal if all the nodes in the layout are placedat the bottom rows of the layout, a node u occupies � rows and �u columns, and all thewires are laid down above the row �.De�nition 6.6 A collinear layout is normal if it is seminormal, all the nodes are adja-cent, and all the wires are laid down as two vertical sections connected by a horizontalsection.For these two classes of layouts we can de�ne two new parameters.

CHAPTER 6. VLSI LAYOUT COMPLEXITY 56De�nition 6.1 Let f(x) be a monotonically non-decreasing function. A n-node graphhas a f(x)-bisector either if it has only one node or if by removing at most f(n) of itsedges it can be divided into two subgraphs with the same number of nodes (within one),both with f(x)-bisectors.In general, separators need not bisect the graph at each stage. Our de�nition is morerestrictive, for instance, than the de�nition of separator used by Leiserson [44]. However,Ullman [80] showed how to obtain a bisector (he calls it strong separator) from separatorsas de�ned by Leiserson.The separator framework is restricted to lay out graphs with bounded vertex degree.This is an important restriction on the applicability of this framework.We also present several results for graphs with given bisectors. The following resultcan be found in [80].Theorem 6.1 A n-node graph with a f(x)-bisector can be laid out in a square area whoseside is O(maxfpn;Plog4 ni=0 2if(n=4i)g).The kind of bisectors most commonly considered are those of the form f(x) = O(x�).For them the above summation takes a value O(pn) if � < 1=2, a value O(n�) if � > 1=2,and a value O(pn log n) if � = 1=2. For graphs with these kind of bisectors it has beenshown that the above areas can be obtained with the following maximum wire length[41].Theorem 6.2 A n-node graph with a f(x)-bisector, where f(x) = O(x�), can be laidout in an area of O(n) with maximum wire length of O(pn log n) if � < 1=2, in an areaof O(n2�) with maximum wire length of O(n�) if � > 1=2, and in an area of O(n log2 n)with maximum wire length of O(pn log n= log log n) if � = 1=2.6.1.3 BifurcatorsBifurcators appeared as an alternative to separators. They solve some of the problemsand restrictions of the separator framework.De�nition 6.2 A graph has a F -bifurcator either if it has only one node or if by remov-ing at most F of its edges it can be divided into two subgraphs, both with F=p2-bifurcators.The de�nition of bifurcator implies a way to iteratively partition the graph so thatin the ith step of this partition process (with i = 0 initially) no more than F=p2iedges are removed in each partition (at the ith step of the partition process we arepartitioning 2i disjoint graphs.) Special cases of graphs will be considered based onadditional restrictions imposed in this partition process.

CHAPTER 6. VLSI LAYOUT COMPLEXITY 55
Figure 6.1: Collinear layout for K(5).node u with vertex degree �u is laid out as a rectangle with sides of length at least
(�u).Under this model, the wire area of a layout is the number of tiles that hold either asection of a wire or a wire crossing. The length of a wire is the number of tiles traversed bythe wire from its source node to its destination node. For technological reasons [80], thelayout area is de�ned as the area of the smallest rectangle that contains all the allocatedtiles of the layout. This value is fully described with the length and the width of thisrectangle. We assume that the width of a layout is the length of the shorter side of therectangle and the length of the layout is the length of the longer side. We also assumethat the rectangle is oriented in the grid with the longer side horizontally placed.Figure 6.1 shows a layout for the 5-node complete graph, K(5), with layout area of77, wire area of 55, width of 7, length of 11, and length of the longest wire of 15.The area of a layout strongly determines its fabrication cost. It has been shown thatthe larger the area, the smaller the yield of the manufacturing process [80]. Furthermore,the reduction of the yield is exponential with the area. Therefore it is interesting to havelayouts with the least possible area.In the other side, we also try to reduce the length of the longest wire in the layout, sinceit imposes a restriction on the speed of the system [80]. This is due to the propagationtime of signals from one extreme to the other of the wire, which at the processing speedsof a VLSI system is not negligible.Thompson [77, 78] showed that the square of the bisection width is a lower bound onthe wire area of any network. Leighton [41] presented the crossing number as an eventighter bound for the wire area. These fact will be used to obtain lower bounds on thearea for our networks.6.1.2 SeparatorsIn this chapter we consider a special kind of separators, which we denote as \bisectors."

Chapter 6VLSI Layout ComplexityThis chapter explores the VLSI layout complexity of homogeneous product networks.Here, we obtain lower and upper bounds on the area and wire length of layouts for thesenetworks.In the following section we present relevant background for this chapter. Then wepresent the lower bounds obtained. Finally, we present upper bounds derived by usingtwo traditional frameworks, separators and bifurcators, and a new approach based oncollinear layouts.6.1 FoundationsIn this section we start by de�ning the VLSI layout model used. Then, we refer toprevious popular frameworks used to derive layouts under this model: separators andbifurcators. Finally, we will present a special kind of layouts (collinear layouts) that willbe used in this research to obtain e�cient layouts for product graphs.6.1.1 The Thompson's Grid ModelThe VLSI layout model we use was de�ned by Thompson [77, 78]. In this model, thelayout area is divided into square \tiles" of unit area, placed in a grid fashion. Each tilecan hold either a section of wire, a node, or a wire crossing. The wires of the layout runeither horizontally or vertically on this grid. If two wires enter the same tile they musthave di�erent directions and they cannot change direction in the tile.Observe that since a node is assigned to a tile, the nodes are not allowed to havemore than 4 incident wires. When a node has a degree larger than 4, Thompson hasproposed to model it with a set of adjacent tiles whose perimeter is at least the desireddegree. Although the smallest area required to have a perimeter of �u for a node u hasonly O(�u) tiles, it is much more realistic to assume that a node with vertex degree �uwill require area of at least
(�u)�
(�u). In this dissertation we shall assume that any54

CHAPTER 5. ALGORITHMS 53to the square of the number of nodes of the input graph. This is the best time complexityknown for any algorithm solving this problem.In the n � n grid it is know an algorithm that �nds the tree in O(n) time. If weconsider n = N r=2, our algorithm takes O(r2N logN) time, that is better for a largeenough value of r.

CHAPTER 5. ALGORITHMS 52Factor network Sorting Summation Matrix mult. Min. weight sp. treeL(N) O(r2N) * O(rN) * O(rN) * O(r2N logN)T (N) O(r2N) * O(r logN) * O(r logN) * O(r2 log2N)S(N) O(r2 log2N) O(r logN) * O(r logN) * O(r2 log2N)D(N) O(r2 log2N) O(r logN) * O(r logN) * O(r2 log2N)Q1 O(r2) O(r) * O(r) * O(r2)Table 5.1: Time complexity of the presented algorithms in several networks.From the results presented, it can be observed that the time taken by the sortingalgorithm in the grid and the product of complete binary trees with bounded numberof dimensions is O(N), which is optimal. In Qr the algorithm takes O(r2) time steps,reaching the asymptotic bound of the odd-even merge sorting algorithm in the hypercube.Although there are asymptotically better sorting algorithms for the hypercube [19], theyare not practically useful for reasonable number (� 220) of keys.In other networks our sorting algorithm improves the computation time taken byalternative ways of sorting. For instance, in the product of de Bruijn or shu�e-exchangegraphs we could try to embed the N r-node instance of the pure factor graph and use thesorting algorithm for the factor graph to sort in the product graph. If we use the odd-evenmerge sorting algorithm in the factor graph, this algorithm will take O(r2 log2N) stepsthat have to be emulated by the product graph. Since the embedding has congestion
(r),the emulation will not have constant slowdown, and our algorithmwill be preferable. If weconsider the number of dimensions bounded then both options present same asymptoticcomplexity, but our algorithm has a smaller constant.The values obtained for the summation algorithm are asymptotically optimal, sincethey match the lower bound de�ned by the diameter of the respective networks.For the same reason, the time complexities for matrix multiplication are asymptot-ically optimal. In some cases we might be poorly using the amount of processors wehave. For instance, there are algorithm that can multiply larger matrices in the gridPL3(N) than ours. However, in this case, we can always emulate this network with anyhomogeneous product network if G(N) is connected.For most of the studied network the matrix multiplication algorithm performs verye�ciently. The implementation in the product of complete binary trees performs ase�ciently as the algorithm for mesh of trees presented in [58], while it uses less processors(4N r � 3N r=3 opposed to N r.) The implementation in the hypercube obtains the sametime complexity as the fastest algorithm for hypercubes (in fact both algorithms turnout to be almost the same.) Again, for products of shu�e-exchange and de Bruijn thealgorithm outperforms the option of emulating the best algorithm for the factor network.The presented complexities for the minimum-weight spanning tree problem are worst-case values. In most cases we obtain that at most we need a number of steps proportional

CHAPTER 5. ALGORITHMS 51For the other algorithms, if we take as node 0 the node in the center of L(N),then broadcasting, point-to-point communication, summation, and search of theminimum takes at most bN=2c+1 steps. Hence, the time to obtain the summationof N r values in PLr(N) is rbN=2c+1, the time to multiply two N r=3�N r=3 matricesis 2rbN=2c=3 + 1, and the time to obtain the minimum-weight spanning tree of aN r=2-node graph is 4r2bN=2c log4=3N + 1.Product of complete binary trees. For this network we can directly apply Corol-lary 5.1 and obtain that PTr(N) can sort N r values in O(r2N) time steps.If the special node 0 is the root of T (N), it can do all the required operations forthe other algorithms in log(N + 1) steps. We can obtain, then that the summa-tion algorithm will take r log(N + 1) � r + 1 time steps in PTr(N), the matrixmultiplication algorithm will take 2r(log(N + 1) � 1)=3 + 1 time steps, and theminimum-weight spanning-tree algorithm will take 4r2(log(N +1)� 1) log4=3N +1time steps.Product of de Bruijn and shu�e-exchange networks. We can sort in their two-dimensional instances by using the embeddings of their respective factor networks,which will be presented in Chapter 7 and have constant dilation and congestion forbounded number of dimensions. Given the existence of algorithms to sort n keysin any hypercubic network in O(log2 n) time, we can sort by emulation N2 keys ina two-dimensional product network in O(log2N2) = O(log2N) time steps. Then,our algorithm will take O(r2 log2N) time steps in these networks. Again, if r isbounded the expression simpli�es to O(log2N).The diameter of S(N) is 2 logN �1 and the diameter of D(N) is logN . This valueplus one is the time that any of the operations required by the other algorithmsrequire. Then we obtain that their product take, respectively, r(2 logN�1)+1 andr logN+1 time steps to obtain the summation ofN r values, 2r(2 logN�1)=3+1 and2r logN=3+1 time steps to multiply two matrices, and 4r2(2 logN�1) log4=3N+1and 4r2 logN log4=3N + 1 to �nd the minimum-weight spanning tree of a graph.Hypercube. From the above analysis of the grid, and given that for the hypercubeN = 2, the time to sort in Qr with our algorithm is O(r2).Similarly, the time to broadcast, communicate, perform a summation, or �nd theminimum in the factor graph is 2 time steps. That yields r+1 time steps to performthe summation, 2r=3 + 1 time steps to multiply matrices, and 4r2 log4=3 2 + 1 timesteps to �nd the minimum-weight spanning tree of a graph in Qr.Table 5.1 summarizes the results derived in asymptotic form. The time complexitiesof the sorting algorithm marked with *" are optimal if the number of dimensions isbounded. The time complexities of summations and matrix multiplications are optimal,and are also marked with *".

CHAPTER 5. ALGORITHMS 50� Send w(i) and L0(i) to the column root (0; i).And the value of P (i) is obtained as follows.� Multicast the values w(i) and L0(i) from the row roots (i; 0) to every (i; j).� Select nodes (i; j) such that L(i) = L(j). These values were already in the nodesfrom the above process.� Compute the minimum weight of the values w(i) from the selected nodes in thecolumn root (0; j). Make P (j) equal to the associated value L0(i) received.� Send P (j) to the row root (j; 0).The analysis of the time steps taken by the whole process follows. In the process ofobtaining L0(i) we need to do a multicast in a PGr=2(N)-subgraph, the computation ofa minimum in a PGr=2(N)-subgraph, and the communication between column and rowroots. Therefore, this �rst process takes r2(B(N) +M(N) + 2C(N)).The computation of P (i) is similar and takes same amount of time. Adding thesetimes with the pointer jumpings, the total time taken by the set of steps described aboveis: r(B(N) +M(N) + 2C(N)) + r(B(N) + 3C(N)) = r(2B(N) + 5C(N) +M(N))It is shown in [42, pp. 336-338] that this set of steps is repeated at most log4=3 n =log4=3N r=2 times. Therefore, the total time taken by the algorithms is:r22 log4=3N(2B(N) + 5C(N) +M(N))5.6 Application to Speci�c NetworksHere we obtain the time taken by the presented algorithms in several product networks.These times are subsequently compiled in Table 5.1.Since the concatenation of execution of several algorithms for the factor graph savesus some steps in the computation, we will apply a small trick to obtain the actual valueof the time steps taken by an algorithm. We will consider in the formulas the value ofB(N), �(N), C(N), andM(N) one unit less than its actual value and we will add a unitto the �nal result obtained.Grid. Schnorr and Shamir [67] showed that it is possible to sort N2 keys in a 2-dimensional grid PL2(N) in O(N) time steps. This value of S2(N) implies that oursorting algorithm will take O(r2N) time steps to sort N r keys in PLr(N). If weconsider the number of dimensions r bounded, this expression simpli�es to O(N).

CHAPTER 5. ALGORITHMS 495.5.2 The Minimum-Weight Spanning-Tree AlgorithmWe will present now the algorithm in detail. The logic and the terminology is similar tothat used in [42, pp. 325-338]. We will refer there for some of the details of the algorithm.The algorithm works by grouping the nodes of the graph in sets, denoted as supern-odes. Then, it iteratively searches the minimum-weight edge incident to every supernode,adds those edges to the list of edges of the tree, and joins the supernodes connected bythese edges. Initially, the set of supernodes is simply the set of nodes of the graph.In the minimum-weight spanning-tree algorithm we use an algorithm to �nd theminimum value of a set of values placed in the nodes of a product graph PGk(N). Thisproblem is similar in structure to the summation problem, and the summation algorithmcan be easily modi�ed to obtain an algorithm for this problem. Then, if there is analgorithm to �nd the minimum in G(N) in M(N) time, we can �nd the minimum inPGk(N) in kM(N) time.In the physical implementation of the minimum-weight spanning-tree algorithm, eachnode (i; j) holds the weight wi;j. Each (row and column) root (i; 0) and (0; i) has a valueL(i) that is the identi�er of the supernode to which node i belongs. This value is thesmallest label of the nodes of the supernode. Additionally, each root will manipulateother values (for instance P (i), L0(i), or P 0(i).)Initially, the value L(i) = i and P 0(i) = i. The algorithm repeats the following setof steps for each node i until all the nodes belong to the same supernode (all the valuesL(i) are equal.)� If the supernode is \available", obtain L0(i) and P (i).� Execute one step of pointer jumping to obtain P 0(i) = P (P (i)).� If P 0(i) = i and P (i) > i then i is the smallest label in the new supernode and wemake P (i) = i.� Execute one step of pointer jumping to obtain P (L(i)) and make it the new valueL(i).We need to detail the �rst step a little more. We say that a supernode is available ifand only if P (i) = i and P 0(j) = i) L(j) = i, for all j.The value L0(i) is obtained as follows.� Multicast the value L(i) from (i; 0) to every (i; j) and from (0; i) to every (j; i), fori; j = 0; :::; N r=2� 1.� Select nodes (i; j) such that L(i) 6= L(j). These are the two values received fromthe row and column roots.� Compute the minimum of the weights w(i) of the selected nodes (i; j) and itsassociated value L(j) in (i; 0), for i = 0; :::; N r=2� 1. Make L0(i) equal to the valueL(j) received.

CHAPTER 5. ALGORITHMS 48with the algorithm described in Section 5.2.1. It is easy to see that these communicationsfollow edge-disjoint paths.In the heart of the algorithm there is a process that we will call \pointer jumping."5.5.1 Pointer-Jumping AlgorithmLet the nodes (i; 0) and (0; i) both contain values X(i) and Y (i). The pointer jumpingprocess computes each value Z(i) = X(Y (i)) and leaves it in both (i; 0) and (0; i),for i = 0; :::; N r=2 � 1. This is a key operation of the minimum-weight spanning-treealgorithm.The process is done in three basic steps.1. Simultaneously, multicast the valueX(i) from (i; 0) to each node (i; k) and the valueY (j) from (0; j) to each node (k; j), for each i; j; k = 0; :::; N r=2 � 1. To do so weuse the broadcasting algorithm presented in Section 5.2.2 in PGr=2(N)-subgraphsof PGr(N). The two multicast operations are applied to di�erent dimensions and,hence, there will be no contention. Each of them is actually the broadcasting inseveral disjoint copies of PGr=2(N).2. Select the node (l; j) such that l = Y (j), for each j = 0; :::; N r=2 � 1. The se-lected node (l; j) sends the value received from the row root to the column root(0; j), for each j = 0; :::; N r=2 � 1. This can be done with multiple point-to-pointcommunications in disjoint PGr=2(N)-subgraphs of PGr(N).3. Finally, each column root (0; j) sends the obtained value Z(j) to its correspondingrow root (j; 0), for each j = 0; :::; N r=2� 1.The time taken by the pointer-jumping algorithm can be obtained very simply. Ifthe time to broadcast in G(N) from the node 0 is denoted as B(N), then step 1 takesr2B(N), since it is a multicasting in PGr=2(N) subgraphs.If C(N) is the maximum time taken by a point-to-point communication algorithmbetween the node 0 and any other node in G(N), from the point-to-point algorithmpresented in Section 5.2.2 we see that the point-to-point communication time between aroot (0; i) and any other node (k; i) of its column is at most r2C(N). Similarly, the timeof a point-to-point communication between a root of a row and a root of a column is atmost rC(N).Therefore, step 2 takes time r2C(N) and step 3 takes time rC(N). The total timetaken by this algorithm is, then,r2B(N) + r2C(N) + rC(N) = r2(B(N) + 3C(N))

CHAPTER 5. ALGORITHMS 47After this process, each node (i; k; j) contains the values ai;k and bk;j , and it cancompute the product of these values. All it remains to do is to add these values to obtainci;j. This is done by using the summation algorithm described in the previous section, toadd all the products held in nodes (i; k; j), for k = 0; :::; N r=3� 1, into the nodes (i; 0; j),for i; j = 0; :::; N r=3 � 1. This process is done by applying the summation algorithm todisjoint copies of PGr=3(N), subgraphs of PGr(N).At the end of this process the product has been computed. The element ci;j of C isheld in node (i; 0; j).The total time taken by the execution of the algorithm depends on the time requiredby a broadcasting inG(N) and a summation in G(N). Let B(N) be the time to broadcastin G(N) from the node 0, and �(N) the time to obtain the summation in G(N) intothe node 0. From the above sections, we know that the time to broadcast from 0:::0 inPGk(N) is kB(N), and the time to obtain the summation into 0:::0 is k�(N).Therefore, to multicast the values of the matrices A and B to all the nodes takesr3B(N) time and to compute the elements of C takes r3�(N) time. The total time takenby the algorithm is, hence, r3(B(N) + �(N)):Clearly, the algorithm can be used to multiply non-square matrices. The choice ofdividing the labels of the PGr(N)-nodes into three equal-length subtuples simpli�es theanalysis, but is not mandatory. The division of the labels can be done in such a way thatit adapts the best to the speci�c dimensions of the matrices.5.5 Minimum-Weight Spanning-Tree AlgorithmIn this section we solve the problem of �nding the minimum-weight spanning-tree ina graph described by its weight matrix W . Let us assume the nodes of the graph arelabeled from 0 to a value n�1. The matrixW will have dimensions n�n and its elementwi;j is the weight of the edge connecting node i to node j.As we did in the previous section we assume that the set of nodes of G(N) is f0; :::; N�1g. The maximumdistance from a node to all the others is minimum for the node 0 and,therefore, the broadcasting time in G(N) from 0 is minimum.We assume that the number of dimensions of the product network, r, is even. Then,we divide each tuple of a node of PGr(N) into two subtuples of equal length, each seenas a N -ary number. Hence, we see the nodes of PGr(N) as labeled with a pair of values(i; j), where i; j = 0; :::; N r=2�1. Initially, node (i; j) holds the element wi;j of the weightmatrix W .We call the node (i; 0) the \root" of \row" i, for i = 0; :::; N r=2� 1. Similarly, we call(0; j) the root of \column" j, for j = 0; :::; N r=2 � 1. It will be very common to transferinformation between the root of the row i, (i; 0), and the root of the column i, (0; i), fori = 0; :::; N r=2� 1. This can be done with simultaneous point-to-point routings obtained

CHAPTER 5. ALGORITHMS 46lems have a similar structure as the summation problem (obtaining the maximum, theminimum, etc.) Algorithms for these problems can be obtained with straightforwardmodi�cations of the summation algorithm presented here. For instance, in Section 5.5we use an algorithm to obtain the minimum of a set of values that is assumed to havethe same structure as the presented summation algorithm.5.4 Matrix-Multiplication AlgorithmThis section is devoted to present an algorithm to perform the product of two n � nmatrices in a n3-node network. Let A and B be the matrices to be multiplied, then wewant to obtain an algorithm that computes a product matrix C. If ai;k are the elementsof matrix A, and bk;j are the elements of matrix B, for i; k; j = 0; :::; n � 1, then theelement ci;j of C is obtained as ci;j = n�1Xk=0 ai;kbk;jLet �rst introduce notation that will simplify the presentation. For the sake of sim-plicity, we will assume that the set of vertices of the graph G(N) is f0; :::; N � 1g. Thetime taken by a broadcasting in G(N) is assumed to be minimum if started from node0 and, similarly, the time taken by a summation is assumed to be minimum if the �-nal result is held in node 0. Then, the time taken by the broadcasting from, and thecomputation of the summation into, the node 0:::0 is minimum in PGr(N).We also assume that the number of dimensions of the product graph PGr(N) is amultiple of 3. Then, the label of each node of PGr(N) is a tuple of length multiple of 3,where each symbol of the tuple is between 0 and N � 1.We divide now each of the tuples into three subtuples of same length. Then, eachnode is considered labeled with a triple of subtuples, each of length r=3. Each subtupleis a sequence of symbols between 0 and N � 1 and, therefore, can be considered as aN -ary number that, in decimal, has a value between 0 and N r=3 � 1.Therefore, by the above process, we have each node of PGr(N) labeled with a tripleof values (i; k; j), where i; k; j 2 f0; :::; N r=3 � 1g. Observe that two nodes with two ofthe elements i, k, j, equal are in a same PGr=3(N)-subgraph of PGr(N).Then, we assume that the element ai;k of the matrix A is initially held in node(i; k; 0) and the element bk;j of the matrix B is initially held in the node (0; k; j), fori; k; j = 0; :::; N r=3� 1.The algorithm starts by simultaneously multicasting in the appropriate PGr=3(N)subgraphs the values of the elements of A and B. Then, ai;k is sent from node (i; k; 0)to all the nodes (i; k; j), for j = 0; :::; N r=3 � 1. Simultaneously, the value bk;j is sentfrom node (0; k; j) to all the nodes (i; k; j), for i = 0; :::; N r=3 � 1. To do so we use thebroadcasting algorithm presented in Section 5.2.2. Since di�erent dimensions are used ineach multicasting, no contention can be observed in the network.

CHAPTER 5. ALGORITHMS 455.2.2 Broadcasting AlgorithmSimilarly, a broadcasting algorithm for PGr(N) can be simply derived from a broadcast-ing algorithm for G(N). The algorithm chooses an order in the dimensions and appliesthe broadcasting in each of the G(N)-subgraphs of each dimension in that order. Then,if we want to broadcast from the node x = xr:::x1 to all the nodes of PGr(N) by us-ing the dimensions in descending order, we �rst broadcast from x to all the nodes inits dimension-r G(N)-subgraph. Then, we broadcast from all the nodes of this G(N)-subgraph to all the nodes in their dimension-(r� 1) G(N)-subgraphs, and so on.Again, if the broadcasting algorithm for G(N) takes optimal time, then this algorithmalso takes optimal time.5.3 Summation AlgorithmHere we present an algorithm to compute the summation of a set of N r values in PGr(N).Initially, each value is in a di�erent node of the network. At the end of the executionof the algorithm the value of the summation will be obtained in one given node of thenetwork.We initially assume the existence of a summation algorithm for G(N). This algorithmcomputes the summation of the N values held in the N nodes of the network in �(N)time steps, and leaves the result in a given node u of G(N).Our algorithm applies the algorithm for G(N) to the G(N)-subgraphs in each di-mension in some order. After this process, the desired value will be held in the nodex = xr:::x1, where xi = u for i = 1; :::; r. Since we apply r times the summation algo-rithm for G(N), the time taken by this algorithm is r�(N).We can simply observe that the algorithm actually computes the desired summation.If we consider the dimensions in ascending order, we �rst apply the summation algorithmto all the dimension-1 G(N)-subgraphs. Then, after this step each node yr:::y2u willcontain the summation of values of the corresponding dimension-1 G(N)-subgraph. Wecan then apply the summation algorithm to each dimension-2 G(N)-subgraph in the uthPG1r(N) subgraph of PGr(N). In this step the summations obtained in the previous stepare added up. At the end of this step each node yr:::y3uu will contain the summation ofthe values of a di�erent PG1;2r (N) subgraph.We apply this process to each dimension. In the ith step we apply the summationalgorithm for G(N) to each dimension-i G(N)-subgraph of the (u; :::; u)th PG1;:::;ir (N)subgraph of PGr(N). At the end of this step each node yr:::yi+1u:::u will contain thesummation of the values of a di�erent PG1;:::;ir (N) subgraph of PGr(N).After r steps as presented, the summation of all the values will be obtained in the nodeu:::u. All the computation performed has been the execution r times of the summationalgorithm for G(N) and, therefore, the total execution time of the algorithm is r�(N).This algorithm will be used in the following section. Observe that several prob-

CHAPTER 5. ALGORITHMS 44Third, it is always possible to obtain an algorithm for PG2(N) with complexityO(N),given that G(N) is connected. To do so we simply emulate the 2-dimensional grid inPG2(N) by embedding the linear array onto each G(N) subgraph as shown in Theorem3.15 of [42] . Since this embedding has constant dilation and congestion, the emulationhas constant slowdown [37]. Therefore, the O(N)-complexity algorithm presented bySchnorr and Shamir [67] can be emulated by PG2(N) with complexity O(N). Hence,any arbitrary N r-node r-dimensional product network can sort with complexityO(r2N).The combination of these three results yields the proof of the corollary.This corollary will be used in Section 5.6 to obtain the time complexity of this algo-rithm in several product networks.5.2 Routing AlgorithmsMany routing algorithms have been already presented for product networks. These algo-rithms cover most of the routing needs of a network under the SIMD model of computa-tion. Therefore, we will not present new routing algorithms in this section and we referthe interested reader to the speci�c source (see Section 1.2.)However, to simplify the reference, we briey present here two of the simplest algo-rithms, presented in [86]. These algorithms perform point-to-point communication andbroadcasting in the product network, respectively, and they will be used in the followingsections.5.2.1 Point-to-Point Routing AlgorithmIf we assume the existence of a point-to-point routing algorithm for G(N) the point-to-point routing algorithm in PGr(N) from a node x to a node y simply applies thealgorithm for G(N) to each dimension in which x and y di�er, in some arbitrary order.For instance, if x = xr:::x1 and y = yr:::y1 di�er in every symbol position and thealgorithm is applied to the dimensions in descending order, then the path from x to ywill be as follows: x! yrxr�1:::x1 ! :::! yr:::y2x1 ! yWhere the ith arrow represents the path de�ned by the algorithm for G(N) in thecorresponding dimension-i G(N)-subgraph from xi to yi, for i = 1; :::; r.It is easy to see that, if the algorithm for G(N) yields a shortest path, this algorithmalso yields the shortest path between any to nodes of PGr(N). This fact follows fromObservation 2.2, that implicitly states that the traversal of an edge in PGr(N) changesonly one of the symbol positions of the node labels.

CHAPTER 5. ALGORITHMS 43Therefore, the value of Mk(N) can be recursively expressed as:Mk(N) =Mk�1(N) + 2S2(N) + 4R(N)with initial condition M2(N) = S2(N)that yields Mk(N) = 2(k � 2)S2(N) + 4(k � 2)R(N) + S2(N)We can now derive the value of Sr(N).Theorem 5.1 Sorting N r keys in PGr(N) takes Sr(N) = (r� 1)2S2(N) + 2(r� 1)(r�2)R(N) time steps.Proof: The time taken to sort N r keys in PGr(N) is the time taken to sort each 2-dimensional subgraph PG1;:::;r�2r (N) and then merge blocks of N sorted sequences intoincreasing number of dimensions. The expression of this time is as follows:Sr(N) = S2(N) +M3(N) +M4(N) + :::+Mr�1(N) +Mr(N)= (r � 1)S2(N) + (2S2(N) + 4R(N)) rXi=3(i� 2)= (r � 1)2S2(N) + 2(r � 1)(r � 2)R(N)The following corollary presents the asymptotic complexity of the algorithm. SinceS2(N) may not be easy to obtain for an arbitrary network, the corollary uses upperbounds on this parameter to obtain expressions of the complexity only dependent onS(N).Corollary 5.1 The time complexity of sorting N r keys in PGr(N) is at most O(r2minfS2(N);S(N) logN;Ng).Proof: First, since the value S2(N) is never smaller than R(N), the time obtained inTheorem 5.1 is Sr(N) = O(r2S2(N)).Second, it is trivial to obtain a sorting algorithm for PG2(N) that takes O(S(N)logN) time steps, by simply generalizing the algorithm presented for the grid in [65] and[66]. This yields that, at worse, our algorithm has complexity O(r2S(N) logN) for anyarbitrary network.

CHAPTER 5. ALGORITHMS 42Step 2 can be simply implemented by selectively permuting the obtained subsequencesalong dimension 1. There are several possibilities for this permutation that are valid. Wehave presented one in the previous section. Following this option, the key in node xr:::x3jiwill be routed to the node xr:::x3j((i+j) mod N). It can be easily seen that this respectsthe condition of each row having one subsequence from each of the original sequencesand one subsequence Bi;N�1. Now each PG1r(N) subgraph contains one subsequence fromeach original sequence.The above routing has placed each subsequence in a di�erent PG1;2r (N) subgraph,each sorted in snakelike order. We can recursively merge these sequences into a sortedsequence of N r�1 keys. If the number of dimensions is r � 1 = 2, this step is done bydirectly sorting with an algorithm for PG2(N). In the proof of Corollary 5.1 we presentways to obtain such an algorithm if it is not already available.Step 4 is directly done by considering the dimension 1 of PGr(N) in the order.No movement of data is involved in this step and we obtain a sequence sorted almostcompletely.The cleaning of the dirty area is done as described in above sections. We take each2-dimensional subgraph PG3;:::;rr (N) and sort the keys in it using alternate orders inconsecutive subgraphs (order depends on whether p3(x) is either odd or even.) We thenperform two steps of odd-even transposition. In the �rst step we make the nodes withp3(x) odd exchange, if appropriate, their key with the corresponding node (same node) inthe predecessor 2-dimensional subgraph and those with p3(x) even with the correspondingnode in the successor 2-dimensional subgraph. In the second step the nodes with p3(x)odd exchange with the successor and those with p3(x) even exchange with the predecessor.A �nal sorting on each of the 2-dimensional subgraph ends the merge process.Analysis of Time ComplexityTo analyze the time taken by the algorithm we will initially study the time taken by themerge process in a k-dimensional network. This time will be denoted as Mk(N).Lemma 5.3 Merging N sorted sequences of Nk�1 keys each in PGk(N) takes Mk(N) =2(k � 2)S2(N) + 4(k � 2)R(N) + S2(N) time steps.Proof: The time taken by step 1 of the merge process is just the time to reverse the orderof the keys in a G(N)-subgraph. This process can be done with a permutation routing inG(N), that takes time R(N). Similarly, step 2 can be done with a permutation routingalong dimension 1.Step 3 is a recursive call to the merge procedure for k� 1 dimensions and, hence, willtake Mk�1(N) time. Step 4 does not take any computation time. Finally, step 5 takesthe time of one sorting in PG2(N), two permutation routings in G(N), and one moresorting in PG2(N).

CHAPTER 5. ALGORITHMS 41In this section we assume G(N) be a connected graph, with vertex set f0; 1; :::; N�1gand arbitrary edge set. For an arbitrary factor graph G(N), vertex labels can de�ne theascending order of data when sorted. However we need to de�ne an order in the nodesof PGr(N), which will determine the �nal location of the sorted keys. The order de�nedis known as \snakelike" order. For one dimension it is simply the order de�ned in G(N),from 0 to N � 1. Given an order for the nodes of PGk�1(N), the order for PGk(N) isde�ned as follows: if u < v then any node in the uth subgraph PGkk(N) precedes anynode in the vth subgraph PGkk(N). If u = v then the uth subgraph PGkk(N) has thesame order de�ned as PGk�1(N) if u is even, and reverse order if u is odd.The order de�ned guarantees several properties:� Any two consecutive nodes always belong to a common G(N) subgraph.� Let x = xr:::xi+1xixi�1:::x1, where xi < N � 1, be a vertex of PGr(N) and letpj(x) = Prk=j xk. Then, x precedes xr:::xi+1(xi + 1)xi�1:::x1 if and only if pi+1(x)is even.� Two consecutive PGr�k;:::;rr (N) subgraphs of PGr(N), for k = 1; :::; r � 1, havereverse orders.In the rest of this section we present the sorting algorithm for PGr(N). The heartof the algorithm resides in the multiway-merge process that takes N sorted sequences,placed in the N subgraphs PG1k(N) and combines them into one sorted sequence inPGk(N). To do so, recursive calls to the merge process are used when necessary.Once the merge process is available, the sorting is done by initially sorting sequencesof N2 elements placed in the PG1;:::;r�2r (N) subgraphs and iteratively merging groups ofN sequences in larger sequences until only one sorted sequence remains. The reason forstarting the iteration with sequences of length N2 instead of N is in the nature of themerge process, since sorting them is faster than applying the merge step once more.Implementation of the Multiway-Merge Algorithm in PGr(N)Now we present in detail the implementation of the multiway-mergealgorithm in PGr(N).The initial scenario is N sequences, of N r�1 keys each, sorted in the N subgraphsPG1r(N).Step 1 of the merge process is done as follows. Reverse the order of each dimension-2G(N)-subgraph such that p3(x) is odd. This makes all the dimension-2 G(N)-subgraphssorted in non-decreasing order. After this process each PG1r(N) subgraph is a snakelike-order sorted sequence of N -key sequences, each sorted in non-decreasing order. Then,the sequence can be divided in N subsequences by just �xing the second dimension to avalue j, for j = 0; :::; N � 1. The sequence Bi;j is then contained in the (i; j)th subgraphPG1;2r (N) and is already sorted in snakelike order.

CHAPTER 5. ALGORITHMS 40One of the odd-even transpositions will not a�ect this distribution, while the otheris going to move zeroes from the second sequence to the �rst and ones from the �rst tothe second. Depending on whether there are more zeroes than ones or vice-versa in thesetwo sequences, after these two steps Hi is �lled with zeroes or Hi+1 is �lled with ones,respectively (see Figure 5.6.(c).) Therefore, only one sequence contains zeroes and onescombined. The last step of sorting will sort this sequence and the whole sequence J willbe sorted (see Figure 5.6.(d).)5.1.3 Sorting AlgorithmUsing the above algorithm, and an algorithm to sort sequences of length N2, it is verysimple to obtain a sorting algorithm to sort a sequence of length N r, for r � 2.First divide the sequence in subsequences of length N2 and sort each subsequenceusing the known algorithm. Then, iteratively apply the following process until only onesequence remains:� Group all the sorted sequences obtained in sets of N sequences.� Merge the sequences in each set into a larger sorted sequence using the algorithmshown in the previous section.In the next section we show how to implement this algorithm in any homogeneousproduct network and we study the time complexity of the resultant general sorting algo-rithm.5.1.4 Implementation in Homogeneous Product NetworksThe purpose of this section is to obtain a general result of the form: \if the graph G(N)can sort N keys in f(N) time, then PGr(N) can sort N r keys in g(N) time." Once weobtain such a general result, we will then be able to tune the general algorithm for speci�cinstances of product networks. Thus, it is reasonable to initially assume that there existsa sorting algorithm for G(N). For example, since the hypercube Qr is nothing but ther-dimensional product of 2-node linear arrays, the assumed sorting algorithm consists ofa single step of compare-exchange operation. For other factor graphs, such as productsof de Bruijn graphs, we can use the well-known Batcher's algorithm to sort the N values.In the rest of this paper, the time complexity of this sorting algorithm will be denoted asS(N). Similarly, we assume the existence of a permutation routing algorithm that takesR(N) time steps to execute any permutation in G(N).Before the sorting algorithm starts, each node of PGr(N) holds one of the keys tobe sorted, and during and after the sorting only one key will be held in each node. Thetime taken to sort in PGr(N) will be denoted Sr(N).

CHAPTER 5. ALGORITHMS 39for a window of keys of length at most (N � 1)N .Proof: Let zi be the number of zeroes in sequence Ai, for i = 0; :::; N � 1. The restof elements in Ai are ones. Step 1 breaks each sequence Ai into N subsequences Bi;j,j = 0; :::; N � 1. Given the nature of this process, the number of zeroes in a subsequenceBi;j is bzi=Nc + fj(zi), where fj(x) = 1 if and only if x mod N > j. Observe thatfN�1(x) = 0 for any x.After recombining the subsequences as de�ned in step 2, each row i, for i = 0; :::; N�1,has one subsequence from each of the original sequences. Also in each row there is asequence of the form Bj;N�1, whose associated f function has a value fN�1(zj) = 0.Hence, the total number of zeroes in the sequences of one row is bz1=Nc+ bz2=Nc+ :::+bzN=Nc+ gi, where gi is the summation of the values of f functions of the subsequences,and therefore can vary from 0 to N � 1. Step 3 places all these zeroes at the beginningof a new sequence Ci.In step 4 we interleave the N sorted sequences into D by taking one key from eachsequence Ci at the time. Any two sequences Ci can di�er in at most N � 1 zeroes, sincegi can only vary from 0 to N � 1, for i = 0; :::; N � 1. Since the interleaving starts takingone key from the C0 and ends with CN�1, the worst case will occur when g0 = 0 andgN�1 = N � 1. In this case we will have a distance of (N � 1)N between the �rst 1 andthe last 0, which de�nes the unsorted (dirty) area in the sequence D.The worst case after step 4 is shown in Figure 5.5. In this �gure, after z = bz1=Nc+bz2=Nc+:::+bzN=Nc columns of zeroes we see that C0 has g0 = 0, while the last sequenceCN�1 has gN�1 = N � 1. That yields a dirty area that spans along N � 1 columns of Nkeys each, as shown.Now we can show how the last step actually cleans the dirty area in the sequence.Lemma 5.2 The sequence J , obtained after the completion of step 5, is sorted.Proof: We know that the dirty area of the sequence D, obtained in step 4, has at mostlength (N � 1)N . If we divide the sequence D in consecutive subsequences of N2 keys,Ei, the dirty area can either �t in exactly one of these subsequences or be distributedbetween two adjacent subsequences.If the dirty area �ts in one subsequence Ei, after the initial sorting and the odd-eventranspositions the sequence Hj contains exactly the same keys than the sequence Ej, forj = 0; :::; N r�2. Then, the last sorting in each sequence Hj and the �nal concatenationyield a sorted sequence J .However, if the dirty area is distributed between two adjacent subsequences Ei andEi+1, we have two subsequences with zeroes and ones combined. Figure 5.6.(a) presentsan example of this initial situation. After the �rst sorting, the zeroes are located in oneside in sequence Fi and in the other side in sequence Fi+1 (see Figure 5.6.(b).)

CHAPTER 5. ALGORITHMS 38

(b) (c) (d)(a)

N
EE E E F F F F H H H H 20 1 2 3 0 1 2 3 0 1 2 3

Figure 5.6: Clearing of the dirty area.This step is illustrated in Figure 5.6. In this �gure we take groups of N adjacentcolumns in Figure 5.5 and place them in single columns as initial situation. Then,each column in Figure 5.6.(a) is one subsequence Ei, for i = 0; :::; N r�2 � 1. Inthe �gure we present the dirty area divided between two columns. Figure 5.6.(b)presents the sequences Fi obtained after sorting the columns in alternate orders.The situation after the steps of odd-even transposition is shown in Figure 5.6.(c),and Figure 5.6.(d) presents the �nal sorted sequence.We need to show that the described process actually merges the sequences. To do sowe use the zero-one principle which allows us to assume that the domain of keys to besorted is f0; 1g, and to generalize the observed properties to any domain of keys.The �rst property is stated as a lemma.Lemma 5.1 The sequence D, obtained after the completion of step 4, is sorted except

CHAPTER 5. ALGORITHMS 37
z N-1

NorderFigure 5.5: Sequence D obtained after interleaving. The order goes from left to righttaking each column from top to bottom. The shaded area is �lled with zeroes and thewhite area with ones. The boundary area has at most N � 1 columns, as shown.sorted sequences from top to bottom in Figure 5.4.We prove below thatD is almost sorted, since there is a potential dirty area (windowof keys not sorted) of length at mostN(N�1). This situation is shown in Figure 5.5,where having completed step 3, the sorted sequences are interleaved by followingthe vertical dimension one column at a time from left to right.5. Clean the dirty area. To do so we start by dividing the whole sequence D =hd0; d1; :::; dNr�1i into N r�2 subsequences of N2 consecutive keys each. If we denotethese subsequences as Ei, for i = 0; :::; N r�2 � 1, the ith subsequence has the formEi = hdiN2; diN2+1; :::; diN2+N2�1i.Then, we sort the subsequences in alternate orders, i.e. Ei is transformed into asequence Fi, where Fi contains the keys of Ei sorted in non-decreasing order if i iseven or in non-increasing order if i is odd, for i = 0; :::; N r�2 � 1.Now, we apply two steps of odd-even transposition between the sequences Fi, fori = 0; :::; N r�2 � 1. In the �rst step, each pair of sequences Fi and Fi+1, for ieven, is transformed into two sequences Gi = hminffi;0; fi+1;0g;minffi;1; fi+1;1g;:::;minffi;N2�1; fi+1;N2�1gi and Gi+1 = hmaxffi;0; fi+1;0g; maxffi;1; fi+1;1g; :::;maxffi;N2�1; fi+1;N2�1gi. In the second step, each pair of sequencesGi and Gi+1, fori odd, is transformed into two sequences Hi = hminfgi;0; gi+1;0g;minfgi;1; gi+1;1g;:::;minfgi;N2�1; gi+1;N2�1gi and Hi+1 = hmaxfgi;0; gi+1;0g; maxfgi;1; gi+1;1g; :::;maxfgi;N2�1; gi+1;N2�1gi.Finally, we sort each sequence Hi in non-decreasing order, generating sequencesIi, for i = 0; :::; N r�2 � 1, and concatenate all these sequences into a single sortedsequence J = hi0;0; i0;1; :::; i0;N2�1; i1;0; i1;1; :::; i1;N2�1; :::; iNr�2�1;0; iNr�2�1;1;iNr�2�1;N2�1i.

CHAPTER 5. ALGORITHMS 36
. . .

. . .

. . .

. . .

. . .

.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

0,0

1,0

2,0

N-1,0

0,1

1,1

2,1

N-1,1

0,2

1,2

2,2

N-1,2

0,N-1

B 1,N-1

2,N-1

N-1,N-1Figure 5.2: Situation after step 1: each sequence Ai, i = 0; :::; N�1, has been distributedinto N subsequences Bi;j, j = 0; :::; N � 1. Each of the subsequences is still sorted.
. . .

. . .

. . .

. . .

. . .

.

0,0

1,0

2,0

N-1,0

N-1,1

0,1

1,1

N-2,1

N-2,2

N-1,2

0,2

N-3,2

1,N-1

2,N-1

3,N-1

0,N-1

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BFigure 5.3: Situation after the recombination of subsequences done in step 2.sorting algorithm for sequences of length N2 can be used, because a recursive callto the merge process would be more costly in time. The situation after this step isillustrated with Figure 5.4.4. Interleave the obtained sorted sequences Ci = hci;0; ci;1; :::; ci;Nr�1�1i, for i = 0; :::;N � 1, into one single sequence D by alternatively taking one key from eachsequence. Then, the sequence D will have the form hc0;0; c1;0; :::; cN�1;0; c0;1; c1;1;:::; cN�1;1; :::; c0;Nr�1�1; c1;Nr�1�1; :::; cN�1;Nr�1�1i. This is equivalent to reading the
0

1

2

N-1

.

C

C

C

CFigure 5.4: Situation after merging the subsequences in each row.

CHAPTER 5. ALGORITHMS 35
0

1

2

N-1

.

A

A

A

AFigure 5.1: Initial situation before the merge process starts. Each sorted sequence isrepresented as a horizontal block (a row.)To show the correctness of the proofs we will use the zero-one principle due to Knuth[36]. The zero-one principle states that if an algorithm based on compare-exchangeoperations is able so sort any sequence of 0's and 1's, then it sorts any arbitrary sequenceof keys. Thus, we will assume that we are only dealing with sequences of zeroes and ones.5.1.2 Multiway-Merge AlgorithmIn this section we describe the algorithm to merge N sorted sequences, Ai = hai;0; ai;1; :::;ai;Nr�1�1i, for i = 0; :::; N � 1, into a large sorted sequence. The initial situation ispictured in Figure 5.1.The merge process is implemented in the following steps:1. Distribute the keys in each sorted sequence Ai into N sorted subsequences Bi;j, fori = 0; :::; N � 1 and j = 0; :::; N � 1. Subsequence Bi;j has the form hai;j; ai;j+N ;ai;j+2N ; :::; ai;j+(Nr�2�1)N i, for i = 0; :::; N � 1 and j = 0; :::; N � 1. Note that theobtained subsequences are sorted, since all the keys in one subsequence Bi;j comefrom the same sorted sequence Ai and are placed in the subsequence in the sameorder. In Figure 5.2 we illustrate the situation after the completion of this process.Each of the N rows contains N sorted subsequences.2. Recombine the subsequences in the rows, so that each row has exactly one subse-quence from each original sequence and exactly one subsequence of the form Bi;N�1.This can be done, for example, by cyclicly rotating the jth column of subsequencesin Figure 5.2 by j positions, for j = 0; :::; N � 1. As a results, the ith row, for i =0; :::; N�1, will contain the subsequences Bi;0; B(i�1) mod N;1; :::; B(i�N+1) mod N;N�1.The result of this process is illustrated in Figure 5.3.3. Merge the N subsequences in each row i into a single sorted sequence Ci, fori = 0; :::; N � 1. This is done with a recursive call to the multiway-merge process ifthe number of keys in the row, N r�1, is at least N3. If the number of keys is N2 a

CHAPTER 5. ALGORITHMS 34a�ect only in a small amount to the �nal result, and will not a�ect the asymptotic analysisat any point. However, in order to obtain exact values when applying the algorithms toconcrete networks, we will consider this fact and count the steps accurately.Finally, in many algorithms we will assume that a node can simultaneouslymanipulatemessages through all its communication links. This model of communication is knownas the multiport model, and will be assumed in the rest of this chapter.5.1 Sorting AlgorithmIn this section we develop an algorithm to merge N sorted sequences into a single sortedsequence. We call this operation a \multiway merge." From the multiway-merge oper-ation we derive a sorting algorithm, and we show how to use it to obtain an e�cientsorting algorithm for any homogeneous product network. The obtained algorithms runvery e�ciently on product networks since their underlying structure is very well-suitedfor product networks.We start by giving some speci�c de�nitions and notation for this section only. Then,we present our multiwaymerge algorithm and show how to use it for sorting. We continueby showing how to implement the multiway merge sorting algorithm in any homogeneousproduct network and analyze its time complexity.5.1.1 De�nitions and NotationA sorted sequence is de�ned as a sequence of keys ha0; a1; :::; an�1i such that a0 �a1 � ::: � an�1. The multiway-merge algorithm combines N sorted sequences Ai =hai;0; ai;1; :::; ai;n�1i, for i = 0; :::; N�1, into a single sorted sequence J = hj0; j1; :::; jnN�1i.For simplicity, we assume n to be a power of N , N r�1, where r > 2.In order to build an intuitive understanding of the basic idea of the merge operation,we assume that the keys to be sorted are placed in a two dimensional area, as shown inFigure 5.1. Then, in the proof we can meaningfully use the terms row and column whenreferring to groups of keys. For instance, we initially assume that each sorted sequenceAi, for i = 0; :::; N � 1, is in a di�erent row (see Figure 5.1.)To merge N sequences of N r�1 keys each, we initially assume the existence of analgorithm which can sort N2 keys. We make no assumption in regards to the e�ciency ofthis algorithm as yet. Wemight note here that our assumption is not due to a limitation ofthe proposed approach, because we can recursively apply the same algorithm to sequencesof length N2 taking a new of number of sequences to be merged (for instance M = pN)until the sequence length reduces to O(1) keys which will then take constant time tosort on every network. The purpose of this assumption is to maintain the generality ofdiscussions independent of the method used to implement this process. For instance, inour networks we assume this operation as basic, and obtain the time complexity basedon the time of performing this sorting.

Chapter 5AlgorithmsIn this chapter we present several algorithms that run e�ciently in homogeneous productnetworks. One of the most important properties of all these algorithms is that they onlydepend on a few characteristics of the factor graph. All of them can be executed in anyhomogeneous product network without modi�cation.We start by presenting a sorting algorithm based on Batcher's odd-even merge sortingalgorithm. Here we do a non-trivial generalization of its odd-even merge to obtain analgorithm very well-suited to product networks.We follow by recalling two simple known routing algorithms, that will be used in otheralgorithms developed here. Then, an algorithm to compute the summation of severalvalues is presented. This algorithm can be easily modi�ed to solve other problems withsimilar structure.Then, we derive a matrix-multiplication algorithm that uses the broadcasting andsummation algorithms mentioned. Finally, we generate a minimum-weight spanning-treealgorithm, that uses an algorithm to �nd the minimum of a set of values trivially derivedfrom the summation algorithm.After the application of the algorithms generated to several product networks we �ndthat they perform very e�ciently in most of the cases, reaching the asymptotic timecomplexity of the best practical algorithms known.One execution step in an algorithm involves the input of some values into each nodethrough the links incident to it, some computation done in the node, and the output ofsome values through the node links. Of course, the number of values input or output inone step is bounded, and the size of each is also bounded. Therefore, the time taken bythe step is considered constant.In many of the algorithms we start with simple algorithms for the factor network andapply them in order to compose the desired algorithm. Note that the last step of onealgorithm and the �rst of the following can be combined and counted as a single step inthe overall algorithm. In order to simplify the expressions we will not consider this factwhen obtaining the general expressions of the time complexity of the algorithm. This will33

CHAPTER 4. EMBEDDING PROPERTIES 32Corollary 4.4 PRr(N) is a subgraph of PDr(N), PCr(N), or PBr(N).The same theorem can be used to show this corollary, from the existence of a hamil-tonian path in the shu�e-exchange graph [25].Corollary 4.5 PLr(N) is a subgraph of PSr(N).Since we know that the cube-connected cycles, C(N), is a subgraph of the wrappedbuttery, B(N), by using the same theorem, we obtain that PCr(N) is a subgraph ofPBr(N).There are embeddings between S(N) and D(N) with dilation 2 and congestion 2.Then, the use of corollaries 4.1 and 4.2 yields the following.Corollary 4.6 PSr(N) can be embedded onto PDr(N), and vice-versa, with dilation 2and congestion 2.This corollary shows that the products of these networks are computationally equiva-lent, the same way the factor networks are. Let us consider now the product of completebinary trees, PTr(N). Corollary 4.3 gives us that the torus can be embedded onto thisnetwork with dilation 3 and congestion 2. If we map the nodes of T (N) into the nodes ofD(N + 1) following the labeling shown in De�nition 2.8 and Figure 2.6, we see that theformer is a subgraph of the latter. Therefore, PTr(N) trees is a subgraph of PDr(N+1).Observe that embeddings imply other embeddings. For instance, this last mentionedfact implies that PTr(N) can be embedded into PSr(N + 1), since PDr(N + 1) can.We want to note that sometimes it is interesting to work with instances of productnetworks and consider them as factor graphs to obtain some results. This is very useful,for instance, if we are dealing with the hypercube.Corollary 4.7 PTr(N) can be embedded into the (r log(N + 1))-dimensional hypercubewith dilation 2 and congestion 1.This result is a direct consequence of the existence of a dilation-2 congestion-1 em-bedding of the complete binary tree into the hypercube [31].

CHAPTER 4. EMBEDDING PROPERTIES 31
a

c

b

e

d a
b d

e

c

G H G’Figure 4.1: Obtaining G0(NG0) from G(NG)Since G0(NG0) obtained this way is a subgraph of H(NH), apply the above theorem.Corollary 4.2 If G(NG) can be embedded into H(NH) with congestion c, then PGr(NG)can be embedded into PHr(NH) with congestion c.Proof: An embedding of G(NG) into H(NH) with congestion cost c directly induces theclaimed embedding for PGr(NG) in PHr(NH).Note that the expansion of the embedding between factor graphs is NH=NG. Thepresented embeddings have, then, expansion (NH=NG)r, that grows exponentially withthe number of dimensions. However, in most of the embeddings found in this researchthe expansion of the embeddings between factor graphs is practically 1, and the resultingexpansion for product graphs is also practically 1.The above results can be used to obtain very powerful results for any homogeneousproduct graph. For instance, we can use the embedding of the N -node ring onto any N -node connected graph presented in Theorem 3.15 of [42] to show the following corollary.Corollary 4.3 If G(N) is connected, then the N r-node r-dimensional torus can be em-bedded onto PGr(N) with dilation 3 and congestion 2.Observe that this result presents that practically any product network can e�cientlyemulate the torus. This gives an idea of the power that any product network has just bybelonging to this class.4.2 Application to Speci�c NetworksWe apply now the above results to prove embeddings between product networks. Manyothers can be presented, but we do not attempt to make the list exhaustive. Thiscompilation simply shows the power of the above simple results.Since the de Bruijn, cube-connected cycles, and wrapped buttery graphs contain ahamiltonian cycle, it is directly implied by Theorem 4.1 that they contain the torus assubgraph.

Chapter 4Embedding PropertiesThe embedding results of this research are among the most important results since theyshow a way of emulating one network by another. In the context of product networks, theutility of embedding results is further emphasized by the fact that many of the existingpopular architectures can be modeled as product networks.We start by showing simple but powerful results. Subsequently, we apply them toprove several embedding results involving speci�c homogeneous product networks.4.1 General ResultsThe following is one of the most important results of this section.Theorem 4.1 PGr(NG) is a subgraph of PHr(NH) if and only if G(NG) is a subgraphof H(NH).Proof: The su�cient condition has been shown before (Lemma 3.3 in [42].) Therefore,we only focus on the necessary condition. If G(NG) is not a subgraph of H(NH), thenthere must be at least one edge (u; v) in G(NG) which cannot be mapped to any edge inH(NH). Since PGr(NG) = G(NG)
 PGr�1(NG), we can write an edge of PGr(NG) as(ux; vx) where x is a vertex in PGr�1(NG). Similarly,PHr(NH) = H(NH)
PHr�1(NH),and the edge (ux; vx) cannot exist in PHr(NH) since (u; v) is not an edge in H(NH).This theorem and its extensions have many signi�cant implications. In particular,the next two results have a wide variety of possible applications.Corollary 4.1 If G(NG) can be embedded into H(NH) with dilation d, then PGr(NG)can be embedded into PHr(NH) with dilation d.Proof: Modify G(NG) to obtain G0(NG0), such that whenever an edge of G(NG) ismapped to a path of H(NH), replace it for the path it is mapped to (see Figure 4.1.)30

CHAPTER 3. STRUCTURAL PROPERTIES 29
Factor netw. Nodes Edges Diameter Conn. �, �L(N) N r r(N � 1)N r�1 r(N � 1) r r, 2rT (N) N r r(N � 1)N r�1 2r(log(N + 1)� 1) r r, 3rS(N) N r 3rN r=2 r(2 logN � 1) r 3rD(N) N r 2rN r r logN 2r 4rB(N) N r 2rN r �(r logN) 4r 4rC(N) N r 3rN r=2 �(r logN) 3r 3rQ1 2r r2r�1 r r rP (10) 10r 15r10r�1 2r 3r 3rK(N) N r r(N � 1)N r=2 r (N � 1)r (N � 1)rFactor netw. Partitionability Max. cong. Bis. width Cr. NumberL(N) bN=ic, i = 1; :::; N O(N r+1) �(N r�1)
(N2(r�1))T (N) 2i, i = 0; :::; log(N + 1) N r�1(N2 � 1)=2 �(N r�1)
(N2(r�1))S(N) - O(N r logN) �(N r= logN)
(N2rlog2N)D(N) - O(N r logN) �(N r= logN)
(N2rlog2N)B(N), N = n2n 2i, i = 0; :::; n O(N r logN) �(N r= logN)
(N2rlog2N)C(N), N = n2n 2i, i = 0; :::; n O(N r logN) �(N r= logN)
(N2rlog2N)Q1 - 2r 2r�1
(22(r�1))P (10) - 10r 10r=2
(102(r�1))K(N) bN=ic, i = 1; :::; N 2N r�1 �(N r+1)
(N2(r+1))Table 3.3: Structural parameter of several homogeneous product networks obtained byapplication of the presented results.

CHAPTER 3. STRUCTURAL PROPERTIES 28width is 1 and the value B0 for the case N odd is also 1. We use these to obtain the restof the properties of the grid.A complete binary tree T (N), has N � 1 edges, diameter of 2(log(N + 1) � 1),connectivity of 1, minimum vertex degree of 1, maximum vertex degree of 3, and itis 2i-partitionable, for i = 0; :::; log(N + 1). The maximal congestion is (N2 � 1)=2, thebisection width is 1, and the value B0 is 1.In the shu�e-exchange graph S(N), every vertex has a degree of 3, although someedges are self loops. Any two nodes are connected by at least one path, although manypairs of vertices are connected by up to three vertex disjoint paths. The diameter is2 logN � 1 and the bisection width is �(N= logN). From the analysis conducted in [42]to obtain its bisection width we can conclude that its maximal congestion is O(N logN).Every vertex of the de Bruijn graph D(N) has degree 4. Every pair of nodes are con-nected by at least two vertex disjoint paths (since de Bruijn graph contains a hamiltoniancycle), although most pairs of vertices are connected by up to four vertex-disjoint paths.The diameter is logN and the bisection width is �(N= logN). The maximal congestionis O(N logN). Neither this network nor the shu�e-exchange are partitionable.We now consider the cube-connected cycles, C(N), and the wrapped buttery, B(N),were N = n2n. Both have diameter �(logN), are 2i-partitionable, for i = 0; :::; n (n isthe number of levels), have bisection width �(N= logN), and maximal congestion ofO(N logN). C(N) has vertex degree of 3 in each node and connectivity of 3, while thewrapped buttery B(N) has vertex degree and connectivity of 4.The Petersen graph P (10) has 10 nodes and 15 edges. Its diameter is 2, connectivityis 3, and vertex degree is 3. The bisection width is 5 and the maximal congestion is 10.The complete graph K(N) has N � 1 edges, diameter of 1, connectivity of N � 1,and vertex degree of N �1, it is bN=ic-partitionable, for i = 1; :::; N , has bisection width�(N2), and has maximal congestion of 2.All these values have been used to compose Table 3.3 by direct application of thegeneral results presented in this chapter.Note the interesting structural properties that each single product network presents.If the factor network has logarithmic diameter the product network also has logarithmicdiameter. When the diameter is linear in the factor network (see the linear array), in theproduct version it tends to be logarithmic for a large enough number of dimensions.The connectivity of all the product networks is at least r. The vertex degree is alsoa function of r. If we maintain the value of r bounded by a large constant number wehave the advantages of a network with bounded vertex degree and large connectivity.It can be noted also that the bisection width of the networks is large if r is reasonablylarge. The results presented allow us to obtain the exact value of the bisection width fortwo of the cases (actually, for N even, we also obtain exact values for grids and productsof complete graphs.)

CHAPTER 3. STRUCTURAL PROPERTIES 27Property Value in PGr(N)Maximal congestion At least CN r�1Bisection width At most BN r�1 (N even)At most B +B=2Pr�1i=1 (N i + 1) +B0=2Pr�1i=1 (N i � 1) (N odd)At least N r+1=2C (N even)At least (N2r � 1)=2CN r�1 (N odd)Crossing number At least (N r � 1)(N r � 2)(N r � 3)=(20C2N r�2)� (rEN r�1)=2Table 3.2: Advanced structural properties of PGr(N) obtained from the values of themaximal congestion, C, the bisection width, B, and B0 of G(N).We know from Theorem 3.6 that the maximal congestion of PGr(N) is at most CN r�1and we have seen earlier in this chapter that it has rEN r�1 edges. Using these, we obtainthe claimed lower bound on the crossing number of PGr(N).The bounds obtained with this theorem are the same for the hypercube as thoseobtained in [76], but our result is obtained much simpler than those in [76]. For severalnetworks we show that the bounds we obtain are asymptotically tight, since we areable to generate layouts for these networks with the same asymptotical layout area (seeChapter 6.)The results of this section have been collected in Table 3.2.3.3 Application to Speci�c NetworksHere we apply all the obtained results to several speci�c networks, identi�ed by theirfactor graph. The results for the product networks are obtained from the properties oftheir factor graphs. The results are summarized in Table 3.3.We have shown that every product graph is N i-partitionable, for i = 0; :::; r, then wedo not include this property in the table. Only speci�c partitionability characteristicsare included there. In order to simplify some entries, we also express some results inasymptotic notation. Speci�cally, the bisection width and the crossing number are mostlyexpressed in this notation in the table.We start with the linear array, L(N). It has N � 1 edges, diameter of N � 1, con-nectivity of 1, minimum vertex degree of 1, maximum vertex degree of 2, and it isbN=ic-partitionable, for i = 1; :::; N (bN=ic is the number of subarrays of i nodes thatcan be obtained from the linear array.) These properties yield the �rst set of structuralproperties of the grid. The maximal congestion is at most N2=2, and is found in thecentral edges of the array once we map the directed complete graph edges. The bisection

CHAPTER 3. STRUCTURAL PROPERTIES 26is f(1) = B. The solution of this recurrence yields the claim.However, to obtain lower bounds on the bisection width is not that easy. The valueof the bisection width of G(N) does not carry enough information to be able to derive alower bound on the value of the bisection width of PGr(N). Therefore we need to use astronger parameter. This will be the the maximal congestion of G(N).The use of the maximal congestion allows us to derive the following result. The prooftechnique is similar to that used in [42] to obtain lower bounds on the bisection width ofother networks.Theorem 3.9 If the maximal congestion of G(N) is C, then PGr(N) has bisection widthat least Nr+12C if N is even, and at least N2r�12CNr�1 if N is odd.Proof: The bisection width of the N r-node directed complete graph is N2r=2 if N iseven, and (N2r � 1)=2 if N is odd. Since we can embed it onto PGr(N) with congestionat most CN r�1, the bisection width of PGr(N) has to be at least N2r=2CNr�1 = N r+1=2C ifN is even or (N2r � 1)=2CN r�1 if N is odd, because otherwise we could bisect the em-bedded directed complete graph by removing less edges than its bisection width, whichis a contradiction.Observe that the lower bound just presented and the upper bound presented in The-orem 3.7 are the same (and therefore both tight) if B = N2=2C. However, when N isodd we can not guarantee that the bounds obtained are tight. To obtain the exact valueof the bisection width of PGr(N) when N is odd is a di�cult task, since it is not evenknown for such a simple network as the multidimensional grid [42]. For PL2(N), whenN is odd, it is known that the lower bound obtained by Theorem 3.9 is not tight, whilethe upper bound obtained by Theorem 3.8 is.3.2.3 Crossing NumberWe now investigate the crossing number of homogeneous product networks. Since weonly use the value of this parameter to derive lower bounds on the layout area, we onlyderive lower bounds on its value. The method used is similar to the method introducedin [41], and uses the maximal congestion. Again, we could not generate these boundsfrom the value of the crossing number of G(N).Theorem 3.10 If G(N) has E edges and its maximal congestion is C, then the crossingnumber of PGr(N) is at least (Nr�1)(Nr�2)(Nr�3)20C2Nr�2 � rENr�12Proof: From the results in [34, 35, 39] it was shown in [76] that if an n-node graph has eedges and its maximal congestion is c then its crossing number is at least n(n�1)(n�2)(n�3)20c2 �e2 .

CHAPTER 3. STRUCTURAL PROPERTIES 253.2.2 Bisection WidthIn this section we obtain bounds on the bisection width of PGr(N). We start by pre-senting upper bounds simply obtained from the value of the bisection width of G(N).Theorem 3.7 If the bisection width of G(N) is B and N is even, then the bisectionwidth of PGr(N) is at most BN r�1.Proof: The bisection of each G(N)-subgraph in a given dimension i bisects the wholegraph PGr(N). Let G(N) be divided into two subgraphs with vertex sets U and V , re-spectively, when bisected. Then, the bisection of each dimension-i G(N)-subgraph dividesPGr(N) into two subgraphs with nodes of the form xr:::xi+1uxi�1:::x1 and xr:::xi+1vxi�1:::x1, respectively, where u 2 U , v 2 V , and xj, for j = 1; :::; r and j 6= i, is a node ofG(N). Since jU j = jV j, both graphs have the same number of nodes and PGr(N) hasbeen bisected.The upper bound on the bisection width of a product graph PGr(N) when N isodd is a little more complicated. When we bisect G(N) we obtain two subgraphs with adi�erence of one in the number of nodes. Therefore, we can not use the method presentedabove in this case.Let us assume that the bisection of G(N) yields subgraphs with node sets U and V ,and that jV j = jU j+1. We can de�ne B0 to be the minimum number of edges that needto be removed from G(N) to bisect it into two subgraphs with vertex sets V � fvg andU [fvg, for some v 2 V . Clearly, if there are several ways to bisect G(N) by removingB edges, B0 can be taken as the minimum of the corresponding possible values.With these assumptions we can show that.Theorem 3.8 If the bisection width of G(N) is B, N is odd, and B 0 is as de�ned, thenthe bisection width of PGr(N) is at most B + B2 Pr�1i=1 (N i + 1) + B02 Pr�1i=1 (N i � 1).Proof: To bisect the product graph we apply an inductive process. PGr(N) is bisectedby choosing a dimension (say r) and �rst bisecting the vth PGrr(N) subgraph, where vis the node of G(N) presented above. This partition divides the vth PGrr(N) subgraphinto two subgraphs disconnected from each other in each dimension and connected to therest of PGr(N) by the rth dimension. One subgraph contains (N r�1 + 1)=2 nodes andthe other contains (N r�1 � 1)=2 nodes.We can now bisect each dimension-r G(N)-subgraph to �nish the process. A G(N)-subgraph that contains a node from the large subgraph of vth PGrr(N) subgraph isbisected by removing B edges, while the rest of the G(N)-subgraphs are bisected byremoving B0 edges. This bisects the graph PGr(N).If we denote f(r) the number of edges removed to bisect PGr(N), from the aboveprocess we obtain f(r) = f(r�1)+B(N r�1+1)=2+B0(N r�1�1)=2. The initial condition

CHAPTER 3. STRUCTURAL PROPERTIES 24an upper bound on it, we derive lower bounds on the bisection width and the crossingnumber of the product graph.These lower bounds will be applied in Chapter 6 to obtain lower bounds on theVLSI layout area and maximum wire length for product networks. We can observethat the bounds obtained from the bisection width and from the crossing number areasymptotically the same. These two parameters are the two known approaches to thisproblem, and no link between them was known. Therefore, the maximal congestionappears to be such a link.3.2.1 Maximal CongestionIn this section we study the maximal congestion of product graphs. Since we do notreally need the exact value of the maximal congestion, we will show how to obtain upperbounds on the maximal congestion of PGr(N) given the value of the maximal congestionof G(N).To our knowledge, this is the �rst time the maximal congestion is explicitly identi�edas an important structural property of a graph. In the following sections we will usethe maximal congestion to obtain lower bounds on properties of homogeneous productgraphs that, contrary to the above results, cannot be derived from the same property ofthe factor graph.Theorem 3.6 If the maximal congestion of G(N) is C, then the maximal congestion ofPGr(N) is at most CN r�1.Proof: We show a mapping of the edges of the N r-node directed complete graph intopaths of PGr(N). We �rst map the nodes of the directed complete graph onto the nodesof PGr(N) one-to-one. Then, we map the directed edge from node x = xr:::x1 to nodey = yr:::y1 to the path x! yrxr�1:::x1 ! :::! yr:::y2x1 ! yThe ith arrow represents the path in the corresponding G(N)-subgraph from xi to yi, fori = 1; :::; r. By de�nition of maximal congestion, these paths imply at most congestionC in the G(N) subgraph.Let (zr:::zi:::z1; zr:::z0i:::z1) be a dimension-i edge of PGr(N). If this edge is traversedby a path from x to y as described, then it must be yr = zr, ..., yi+1 = zi+1 andxi�1 = zi�1, ..., z1 = z1. Since the edge (zi; z0i) of G(N) is traversed by at most C pathsbetween two nodes of G(N), there are at most C possible combinations of the values ofxi and yi. Each other xj, for j = i + 1; :::; r, and yk, for k = 1; :::; i � 1, can take Npossible values. Therefore, the edge can be traversed by at most CN r�1 paths.

CHAPTER 3. STRUCTURAL PROPERTIES 23G(N) PGr(N)Nodes N N rEdges E ErN r�1Diameter d rdConnectivity � r�Min. vertex degree � r�Max. vertex degree � r�Partitionability - N i, for i = 0:::rk krTable 3.1: Structural properties of PGr(N) obtained from similar properties of G(N).3.1.5 PartitionabilityThe ability to recursively partition a graph into distinct copies of its smaller versions isanother important property, since it allows assigning the parts of a recursive computationto di�erent subnetworks, or shows a way to share the system between many users.As we already mentioned, product graphs contain a variety of subgraphs which areisomorphic copies of product graphs with fewer dimensions. We have shown in Chapter 2that by removing the edges belonging to k dimensions we obtain a set of disjoint copiesof PGr�k(N). Hence the next theorem follows.Theorem 3.4 PGr(N) is N i-partitionable, for i = 0; :::; r.Furthermore, if the factor graph G(N) is already partitionable into k disjoint isomor-phicM -node graphs of its same family, by applying this partition to each G(N)-subgraphin all the dimensions we obtain a partition of PGr(N) into kr disjoint subgraphs isomor-phic to PGr(M).Theorem 3.5 If G(N) is k-partitionable, then PGr(N) is kr-partitionable.The structural results presented until this point have been compiled in Table 3.1. Allthese results can be characterized by the fact that the properties of the product graphinvolved are easily obtained from the same properties of the factor graph. In the rest ofthe chapter we obtain non-trivial properties of product graphs.3.2 Advanced ResultsIn this section we obtain properties that are not trivially derived from the value of thesame property in the factor graph. We initially study the maximal congestion and, from

CHAPTER 3. STRUCTURAL PROPERTIES 22Theorem 3.1 If G(N) has diameter d, then PGr(N) has diameter rd.The key to the proof of Theorem 3.1 is the observation that there exist at least onepair of nodes in PGr(N) which di�er in every symbol position and each di�ering symbolpair correspond to a distance as much as the diameter of G(N). Finding such a pair ofnodes yields both a lower bound and an upper bound for the diameter of the productgraph.3.1.3 ConnectivityThe connectivity of a network has important implications on its communication band-width and its fault tolerance. The connectivity of product networks was investigated in[24] where a lower bound was obtained.Theorem 3.2 If G(N) has connectivity �, then PGr(N) has connectivity at least r�.The theorem can be simply proven with an inductive statement, where it is shown thatif PGr�1(N) has connectivity (r� 1)�, then PGr(N) has connectivity (r� 1)�+ �. Theincreased number of paths is due to the alternatives added by the introduced dimension.3.1.4 Vertex DegreeThe vertex degree is important mainly in two aspects of a network. First, the maximumvertex degree has strong implications on the cost of the implementation of the network.Second, the minimum vertex degree determines an upper bound on the connectivity ofthe network.The maximumvertex degree of product networks has been previously studied [24, 82,86], while we are not aware of any result on the minimum vertex degree. We join resultson both properties in the following theorem.Theorem 3.3 If G(N) has maximum vertex degree � and minimum vertex degree �,then PGr(N) has maximum vertex degree r� and minimum vertex degree r�.Note from Figure 2.2 that each time we add a new dimension to the product network,we add at least � and at most � to the vertex degrees. Then, there is a vertex x = xr:::x1where each xi, for i = 1; :::; r, corresponds to a vertex of G(N) with degree �. This meansthat x is a node with the minimum vertex degree of r�. Similarly, there is a vertexy = yr:::y1 where each yi, for i = 1; :::; r, corresponds to a vertex of G(N) with degree �.Then y must have the maximum vertex degree r�. Trivially, by construction, no nodecan have vertex degree smaller than r� or larger than r�.

Chapter 3Structural PropertiesIn this chapter we compile some known structural properties of product networks andwe add to the collection with new non-trivial results on other properties not studiedpreviously.3.1 Direct ResultsIn this section we present general results on several structural properties of homogeneousproduct networks. The properties presented here are directly derived from the value ofthe same property in the factor graph.3.1.1 Number of Nodes and LinksAmong the �rst questions we ask about a new interconnection network is the number ofnodes and links in it. We can easily observe that, if G(N) has N vertices and E edges,then PGr(N) has N r vertices and ErN r�1 edges. The statement about the numberof vertices follows directly from De�nition 2.2. To compute the number of edges, it ispossible to observe in Figure 2.2 that PGr(N) contains all the edges of N copies ofPGr�1(N) plus the edges of N r�1 copies of G(N) (since there are N r�1 columns in the�gure.) Thus, we can derive a recurrence f(r) = Nf(r � 1) + EN r�1 for the number ofedges in PGr(N). The solution of this, with the initial condition f(1) = E, gives thedesired result.3.1.2 DiameterThe diameter of a network is another important property. In general, computation ofexact diameter for a given graph may be very di�cult, but for homogeneous productgraphs we are able to state simple rules to calculate the diameter. The next result hasbeen presented in several papers independently [4, 24, 82, 86].21

CHAPTER 2. DEFINITIONS AND NOTATION 20
Figure 2.12: The 4-node complete graph, K(4).number of dimensions. We denote the Petersen graph as P (10) and its r-dimensionalproduct as PPr(10), which is obtained as PPr(10) = P (10)
 PPr�1(10).Finally, we de�ne the complete graph as follows.De�nition 2.14 The N-node complete graph, denoted K(N), is the graph where eachof its nodes is connected with an edge to all the other N � 1 nodes.Figure 2.12 presents the 4-node complete graph K(4). Observe that the vertex degreeof K(N) increases with N .The r-dimensional product of K(N) is denoted PKr(N), and obtained as PKr(N) =K(N)
 PKr�1(N). Since the 2-node linear array, L(2), is isomorphic to K(2), thehypercube can be considered as the multidimensional product of K(2).

CHAPTER 2. DEFINITIONS AND NOTATION 19
0 1 2 3

000

001

010

011

100

101

110

111

(a)

(b)

Figure 2.9: The 3-level buttery and wrapped buttery, B(24).
1 2 3

000

001

010

011

100

101

110

111Figure 2.10: The 3-dimensional cube-connected cycles, C(24).
Figure 2.11: The Petersen graph, P (10).

CHAPTER 2. DEFINITIONS AND NOTATION 18
010

011

110

111101000

001

100Figure 2.8: The 8-node de Bruijn graph, D(8).(hu; ii; hv; ji) is an edge of the buttery if and only if j = i + 1 and either (a) u = v(straight edge) or (b) u and v di�er only in the ith bit (cross edge.)If we collapse the nodes hu; 0i and hu; ni into one single node, for u = 0; :::; 2n� 1, weobtain the wrapped buttery. Figure 2.9.(a) shows the 3-level buttery and Figure 2.9.(b)the 3-level wrapped buttery.As a rule, in the rest of the dissertation we only study the properties of the N = n2n-node wrapped buttery, which we denote as B(N). This decision is justi�able by the factof both networks being almost the same. For instance, it is known that both butteriescan emulate each other with constant slowdown. Furthermore, observe that both haveasymptotically the same number of nodes �(n2n), since the n-level buttery has (n+1)2nnodes and the n-level wrapped buttery has n2n nodes. Most of the results obtained forthe buttery are expressed in asymptotical notation and, hence, are applicable to bothnetworks.The r-dimensional product of (wrapped) butteries is denoted as PBr(N), and canbe obtained as PBr(N) = B(N)
 PBr�1(N).De�nition 2.13 The n-dimensional cube-connected cycles is the graph obtained fromthe hypercube Qn by replacing each node of the hypercube with a n-node cycle, so thateach node of the cycle is connected to one of the edges incident to the original node.The n-dimensional cube-connected cycles has N = n2n nodes and will be denotedC(N). Figure 2.10 presents the 3-dimensional cube-connected cycles, C(24). It is easyto see that the cube-connected cycles and the buttery are very similar. In fact, then-dimensional cube-connected cycles is a subgraph of the n-level wrapped buttery (inFigure 2.9.(b) the darker edges represent the edges of the 3-dimensional cube-connectedcycles.) Similarly, there is a constant-congestion constant-dilation embedding of thewrapped buttery onto the cube-connected cycles.The r-dimensional product of C(N) is denoted PCr(N) and obtained as PCr(N) =C(N)
 PCr�1(N).The next network to be considered is the Petersen graph, shown in Figure 2.11. Itis a �xed-size graph and, therefore, its product version can only grow by changing the

CHAPTER 2. DEFINITIONS AND NOTATION 17
Figure 2.6: The 2-dimensional mesh of 4-leaf trees.
000 001

010

100

110 111

101

011Figure 2.7: The 8-node shu�e-exchange graph, S(8).The r-dimensional product ofN -node shu�e-exchange graphs will be denoted PSr(N),and it is obtained as PSr(N) = S(N)
 PSr�1(N).De�nition 2.11 The N-node de Bruijn graph, denoted D(N), where N = 2h, is thegraph with vertex set 0; :::; N � 1 (in binary), and whose nodes u, v, and w are connectedby edges (u; v) and (u;w) if v can be obtained from u by a cyclic left shift and w di�ersfrom v in the rightmost bit only.Note that, although for simplicity of de�nition we use directed edges to describe thegraphs S(N) and D(N), once the construction in done the resulting graph is consideredundirected.An 8-node de Bruijn graph is shown in Figure 2.8. Observe that, whenever (u; v) isa shu�e-edge in S(N), it is also an edge in D(N). Additionally, whenever (u; v; w) is apath in S(N) such that (u; v) is a shu�e edge and (v;w) is an exchange edge, (u;w) isan edge in D(N).The r-dimensional product of N -node de Bruijn graphs will be denoted PDr(N), andit is obtained as PDr(N) = D(N)
 PDr�1(N).De�nition 2.12 The n-level buttery is the graph with vertex set hu; ii, where i is thelevel of the node, 0 � i � n, and u is the row of the node, 0 � u � 2n � 1 in binary.

CHAPTER 2. DEFINITIONS AND NOTATION 16
Figure 2.4: The 3-dimensional hypercube, Q3.

001

010
011

100 101 110 111Figure 2.5: The 7-node complete binary tree, T (7).1, is the root of the tree. Figure 2.5 presents the 7-node complete binary tree, which has3 levels and 4 leaves.The r-dimensional product of T (N), using the de�ned notation, will be denoted asPTr(N). It can be obtained as PTr(N) = T (N)
 PTr�1(N). In Figure 1.1 we havepresented the 2-dimensional product of 7-node complete binary trees, PT2(7).De�nition 2.9 The r-dimensional N r-leaf mesh of trees, or r-dimensional mesh of N-leaf trees, is the graph obtained from the N r-node r-dimensional grid by substituting thelinear connections along each dimension by N-leaf complete binary trees. The leaves ofthe trees are the original nodes of the grid, and additional nodes are introduced to obtainthe internal nodes of the trees.Figure 2.6 presents the 2-dimensional 16-leaf mesh of trees (or 2-dimensional mesh of4-leaf trees.) In this �gure the nodes of the original grid are shown as dark nodes andthe additional nodes introduced are shown as empty nodes.De�nition 2.10 The N-node shu�e-exchange graph, denoted S(N), where N = 2h, isthe graph with vertex set 0; :::; N � 1 (in binary), and whose nodes u and v are connectedby an edge (u; v) if either (a) u and v di�er in the rightmost bit only (denoted as a\exchange" edge) or (b) v can be obtained from u by a cyclic left shift (denoted as a\shu�e" edge.)An 8-node shu�e-exchange graph is shown in Figure 2.7. In this �gure shu�e edgesare shown as solid lines and exchange edges are shown as dotted lines.

CHAPTER 2. DEFINITIONS AND NOTATION 15
(b)(a)Figure 2.3: The 25-node 2-dimensional grid, PL2(5), and the 25-node 2-dimensionaltorus, PR2(5), respectively.2.4 Networks of InterestWe start by de�ning several networks which will be often referred to in the dissertationand non-product networks whose r-dimensional products will be studiedDe�nition 2.7 The N r-node r-dimensional grid (resp. torus) is the graph whose verticescomprise all the r-tuples x = xr:::x1, such that xi 2 f0; :::; N � 1g, for i = 1; :::; r, andwhose edges connect any pair of nodes x and y if and only if x and y di�er in exactlyone index position i and xi = yi + 1 (resp. xi = (yi + 1) mod N .)As can be observed, the N r-node r-dimensional torus is the r-dimensional productof the N -node ring and the N r-node r-dimensional grid is the r-dimensional product ofthe N -node linear array. Clearly, the N r-node r-dimensional grid is a subgraph of theN r-node r-dimensional torus.We will denote the N -node linear array as L(N), and the N -node ring (or cycle) asR(N). Then, by using the product notation, the graph PLr(N) (resp. PRr(N)) is theN r-node r-dimensional grid (resp. torus.) From De�nition 2.2 they can be obtained asPLr(N) = L(N)
 PLr�1(N) and PRr(N) = R(N)
 PRr�1(N), respectively.The r-dimensional hypercube is simply the 2r-node r-dimensional grid, PLr(2). Forthe sake of brevity, we often denote the r dimensional hypercube as Qr, whose factorgraph is Q1.Figure 2.3 presents the 25-node 2-dimensional grid, PL2(5), and the 25-node 2-dimensional torus, PR2(5). Figure 2.4 presents the 3-dimensional hypercube (or 8-node3-dimensional grid), Q3.De�nition 2.8 The N-node complete binary tree, denoted T (N), where N = 2h � 1, isthe graph whose vertices comprise the set f1; :::; Ng and whose edges connect each vertexu < 2h�1 with the vertices 2u and 2u+ 1.T (N) has h levels of nodes, where the ith level contains the nodes 2i�1 to 2i� 1. Thenodes at level h are called the \leaves" of the tree, and the single node at level 1, labeled

CHAPTER 2. DEFINITIONS AND NOTATION 14In order to obtain lower bounds on the value of these structural properties, we intro-duce a new structural property that is of great interest for several results in our work.De�nition 2.5 The maximal congestion of a N-node graph, denoted C, is the congestionfor any embedding of the N-node directed complete graph onto it.The de�nitions of embedding and congestion of an embedding are given in the nextsection. The maximal congestion is an intrinsic parameter of a graph just like the chro-matic number, crossing number, etc. are intrinsic parameters of a graph. Although itlooks somehow strange and di�cult to obtain, for all the studied networks it has beenenough to have a tight upper bound of its value. Such a bound can be simply obtainedfor an arbitrary network by applying a routing algorithm between each pair of nodes andcounting the congestion of each edge of the network.2.3 Embedding PropertiesWe start by giving a formal de�nition of embedding:De�nition 2.6 An embedding of a \guest" graph G(NG) into a \host" graph H(NH) isa mapping f of the vertices of G into the vertices of H and a mapping g of the edges ofG into paths in H, such that if (u; v) is an edge of G, then g((u; v)) is a path connectingf(u) and f(v) in H.The main cost measures used in embedding e�ciency are:� The load of the embedding is the maximum number of vertices of the guest graphmapped to any vertex of the host graph.� The dilation of an embedding is the maximum path length in the host graph rep-resenting an edge of the guest graph.� The congestion of an embedding is the maximumnumber of paths (that correspondto the edges of the guest graph) that share any edge of the host graph.� The expansion of an embedding is the ratio NH=NG of the host and guest graphssizes.It has been shown in [37] that if G can be embedded into H with load l, dilation d,and congestion c, H can emulate t steps of a computation running on G in O(l+ d+ c)tsteps. If the values l, d, and c are constant, the slowdown introduced by this emulationis also constant. We consider an embedding e�cient if the cost measures are bounded,i.e. they are O(1).

CHAPTER 2. DEFINITIONS AND NOTATION 13This notation can be extended, since by removing the edges of k di�erent dimensionsin PGr(N) we obtain Nk disjoint copies of PGr�k(N). If we remove the edges in dimen-sions i1; :::; ik, we denote the PGr�k(N) subgraph containing the node x = xr:::x1, as the(xi1; :::; xik)th PGi1;:::;ikr (N) subgraph of PGr(N).2.2 Structural PropertiesIn this section we de�ne several structural properties and establish their notation for therest of the document.Let the distance between two nodes in a network be the minimum number of edgesthat need to be traversed to go from one node to the other, then the diameter of anetwork is the maximum distance between any pair of nodes of the network, and it willbe denoted as d. The diameter of a network is an upper bound on the time that anynode-to-node communication in the network will take.The connectivity of a network is the minimum number of vertex-disjoint paths con-necting any two nodes of the network, and will be denoted as �. This value is the sameas the minimum number of nodes to be removed from the network to disconnect it. Theconnectivity of a network is related with the fault-tolerance in the sense that, if the con-nectivity of the network is �, then the network can tolerate up to � � 1 faults in nodesand edges.The vertex degree of a node is the number of edges incident to it. We are speciallyinterested on the maximum vertex degree of a network, i.e. the maximum of the vertexdegrees of its nodes, denoted as �. This value determines its maximum connectivityand has implications in its VLSI layout. We will also study the minimum vertex degree,denoted as �. The vertex degree of an arbitrary node u will be denoted as �uA graph is said to be k-partitionable if it contains as subgraphs k disjoint isomorphiccopies of a graph of its same family. The partitionability properties of a network arevery closely related to the scalability of the network, or the ease of increasing the sizeof a network to another network of the same family. The partitionability of a networkis very useful when implementing recursive algorithms, when working with di�erent sizeproblems, or when sharing the network between several users.The above properties for a product graph are trivially obtained from the same prop-erties of the factor graph. However, other structural properties are more di�cult tobe derived and have never been studied before. We concentrate on two such structuralproperties of product networks: the bisection width and the crossing number.De�nition 2.3 The bisection width of a graph, denoted B, is the minimum number ofedges that have to be removed from it to obtain two disjoint subgraphs with the samenumber of nodes (within one.)De�nition 2.4 The crossing number of a graph, denoted c, is the minimum number ofedge crossings of any drawing of the graph in the plane.

CHAPTER 2. DEFINITIONS AND NOTATION 12
(b) (c)

0

2

1

(a)

2

1

0

0 1 2
01 02 11 12 20 21 2200

0

1

2

10Figure 2.2: Recursive construction of multi-dimensional product networks.From the intuitive description of the construction of G
 H presented above, theconstruction of PGr(N) from PGr�1(N) and G(N) is intuitively described in severalsimple steps: First, place the vertices of PGr�1(N) along a straight line. Draw N copiesof this drawing of PGr�1(N) at the same vertical level in parallel columns. Associatea di�erent vertex u of G(N) to each copy of PGr�1(N) and extend the vertex labels ofeach node x to ux. Finally, connect two nodes ux and vx in the same column if andonly if (u; v) is an edge in G(N). Figure 2.2 shows how to obtain the 3-dimensionalhomogeneous product of the 3-node ring in two applications of this process.From the de�nition, the edges of PGr(N) can be characterized as follows.Observation 2.2 If x and y are in the form x = xr:::x1 and y = yr:::y1, where xi; yi arenodes of G(N), for i = 1; :::; r, then (x; y) is an edge in PGr(N) if and only if x and ydi�er in exactly one symbol position i, and the di�ering symbols (xi; yi) de�ne an edgein G(N).We say that an edge (x; y) belongs to dimension i if the nodes incident to it di�eronly in the ith index position. A G(N)-subgraph of PGr(N) is said to be a dimension-isubgraph if any two nodes in the subgraph di�er only in the ith index position.Observe that PGr(N) contains N disjoint copies of PGr�1(N), each with a di�erentnode of G(N) associated. These copies can be obtained by removing the dimension-redges from PGr(N). Similarly, from Observation 2.1 a similar set of disjoint subgraphscan be obtained by removing all the edges of any dimension i from PGr(N). We usethe notation PGir(N) to refer to any of the disjoint subgraphs obtained by removingthe dimension-i edges of PGr(N). Since each of the resulting subgraphs has a di�erentnode u of G(N) associated, we can meaningfully talk about the uth PGir(N) subgraphof PGr(N). For every node x of the uth PGir(N) subgraph of PGr(N) we have thatxi = u.

CHAPTER 2. DEFINITIONS AND NOTATION 11At a more intuitive level, the construction of G
H from G and H can be describedas follows. First, place the vertices of H along a straight line as shown in Figure 2.1.Then, draw jU j copies of H such that the vertices with identical labels fall in the samecolumn. Next, extend the vertex labels by associating a di�erent label u 2 U to eachcopy of H and changing each vertex label v 2 V of the copy to uv. Finally, connect thecolumns in the interconnection pattern of the labeled graph G, such that uv is connectedto u0v if and only if (u; u0) is an edge in G.From the symmetry in this de�nition, note that the product operator is commutativeand associative:Observation 2.1 G1
G2 is isomorphic to G2
G1, and G1
(G2
G3) = (G1
G2)
G3.Observe that G1
G2 and G2
G1 are not the same graph since, although in both ofthem each vertex is a pair of symbols, the order in the vertices of one is reverse than inthe vertices of the other. However, if G1 and G2 are the same graph, then both productgraphs are the same.Note that, by construction, G
H contains jU j disjoint copies of H as subgraphs, andeach copy has a di�erent label u 2 U associated. Similarly, from the above observation,G
H has jV j disjoint copies of G, each with a di�erent label v 2 V associated.We say that a graph is a product graph if it can be obtained from a set of factorgraphs by the application of the cartesian product operation. If all the factor graphsare isomorphic we have a homogeneous product graph. Otherwise, the product graph isheterogeneous.It will often be important to indicate the number of vertices, so we use G(N) todenote the N -node graph G. The r-dimensional product of G(N) is denoted PGr(N),with the subscript r representing the number of dimensions.Applying this notation, the formal de�nition of r-dimensional homogeneous productgraph is given as follows:De�nition 2.2 Given a graph G(N), its r-dimensional homogeneous product, denotedPGr(N), is1. a single vertex without any edges and no labels when r = 0,2. PGr(N) = G(N)
 PGr�1(N), when r > 0.In general, we let x; y; z denote the vertices of homogeneous product graphs obtainedfrom G(N). For the r-dimensional product graph PGr(N), the vertex labels x; y; z aretuples of r symbols where each symbol is drawn from the set of vertices of G(N). We useu; v; w to denote single vertices of G(N). When the vertex of G(N) is part of the labelof a node x of PGr(N), it is denoted as xi, where the subindex i indicates its positionin the label. For example, x is in the form x = xr:::xi:::x1, where xi, for i = 1; :::; r, is avertex of G(N).

Chapter 2De�nitions and NotationIn this chapter we present de�nitions and notation that will be used in the rest of thedissertation. In order to keep this chapter brief and to locate speci�c information faster,those de�nitions that are relevant to only one chapter have been placed in the speci�cchapter.2.1 Homogeneous Product NetworksAs a reminder to the reader, we start this section with the de�nition of the cartesianproduct, which is illustrated in Figure 2.1.De�nition 2.1 The cartesian product of two \factor" graphs G = (U;E) and H =(V; F) is the graph G
H whose vertex set is U � V and whose edge set contains all theedges (uv; u0v0) such that fu; u0g � U , fv; v0g � V , and either u = u0 and (v; v0) 2 F , orv = v0 and (u; u0) 2 E.
x

y
t

z

a

b

c

tx ty tz tt

ztzzzyzx

yx yy yz yt

xtxzxyxx

Product of H and H
Product of G and H

c

b

a

x y z t

t

z

y

x

x y z t

G

H Figure 2.1: De�nition of cartesian product.10

CHAPTER 1. INTRODUCTION 9network by combining collinear layouts for the factor graph.After applying all these results to several networks we are able to obtain optimal-arealayouts for all of them, with maximum wire lengths close to optimal.1.3 Organization of the DissertationThe rest of this dissertation is organized as follows. Chapter 2 contains formal de�nitionsand notation that will be used in the rest of the document. Those de�nitions and notationthat are relevant to only one of the chapters have been placed in that speci�c chapter forlocality reasons.The following chapters present the results of our program of research. Chapter 3presents the obtained results in the study of structural properties of product networks.Chapter 4 presents the results in embedding a product graph into another. Chapter 5presents general algorithms for product networks. Chapter 6 presents the results in VLSIcomplexity obtained.In Chapter 7 we concentrate on three speci�c instances of product networks andpresent further results for them.Finally, in Chapter 8 we summarize conclusions of the work described here.

CHAPTER 1. INTRODUCTION 8yields the same time complexity as the implementation in the mesh of trees, which is thefastest known.1.2.5 VLSI ComplexityThe VLSI layout model used in this research has been de�ned by Thompson [77, 78].In this model the layout area is divided into square unit-area tiles where the nodes andwires are placed.Thompson showed that the square of the bisection width is a lower bound on the arearequired by a network under this model. Similarly, Leighton [41] presented the crossingnumber of a graph as a lower bound on the area. We use these facts to derive lowerbounds on VLSI complexity for product networks from the value of the bisection widthand the crossing number. They are derived by using the maximal congestion, a newstructural property of the factor network we present.To obtain upper bounds we �rst use two traditional frameworks: separators andbifurcators.Separators were initially used by Lipton and Tarjan [46, 47] to study planar graphs.Subsequently, they have been found to be useful to derive area-e�cient layouts for arbi-trary graphs by Floyd and Ullman [27], Leiserson [43, 44], and Valiant [81]. Furthermore,Bhatt and Leiserson [11] showed that they can be used to obtain layouts with short wires.All these results have been compiled by Leighton [41] and Ullman [80].Bifurcators appeared as an alternative to separators, since they solve some of therestrictions presented by the separator framework. The initial papers de�ning and usingbifurcators are due to Leighton [40] and Bhatt and Leiserson [10, 11], and these resultshave been compiled and improved by Bhatt and Leighton [9].In this dissertation we show how to derive separators and bifurcators for the productgraph from separators and bifurcators of the factor graph. Then, the results of the abovereferences allow to obtain the desired upper bounds.However, both separators and bifurcators are restricted by de�nition to networks withbounded degree. Sherlekar and J�aJ�a [70, 72, 73] tried to solve this problem by de�ningstronger kinds of separators and bifurcators. However, they are so restrictive that wecould not use them for our networks.The last approach we investigate is based on the existence of e�cient collinear layouts(layouts with all the nodes in one line) of the factor graph. Leiserson [44] showed howto obtain collinear layouts for a network with a given separator. Similarly, in [9] anupper bound is presented on the area of collinear layouts of bounded-degree networks.We also refer to graph-theory papers where labeling of graphs are studied. The problemof obtaining e�cient collinear layouts is equivalent to the problem of �nding a labelingof the graph with small bandwidth and small cutwidth [15, 16].Besides these methods, we show how to obtain e�cient collinear layouts for the factorgraph from a regular layout. Then, we present how to obtain a layout for the product

CHAPTER 1. INTRODUCTION 7matrices, and �nding the minimum-weight spanning tree of a graph. These algorithmsare easily modi�ed to sove other problems with similar structure. For instance, it is trivialto modify the minimum-weight spanning-tree algorithm for determining the connectedcomponents, transitive closure, and shortest paths of graphs.Our sorting algorithm is based on the odd-even merge sorting algorithm due toBatcher [2]. In this reference, Batcher presented two e�cient sorting networks. Algo-rithms derived from these networks have been presented for a number of di�erent parallelarchitectures, like the shu�e-exchange [75], the grid [50, 79], the cube-connected cycles[59], and the mesh of trees [51].One of Batcher's sorting networks has, as main components, subnetworks that sortbitonic sequences. Sorting algorithms based on this method are generally called \bitonicsorters." A bitonic sequence is the concatenation of a non-decreasing sequence of keyswith a non-increasing sequence of keys, or the rotation of such a sequence. Severalpapers have been devoted to generalizing bitonic sorters, generalizing Batcher's network[3, 48, 49]. Recently, Lee and Batcher [38] presented a new network to merge and sort kbitonic sequences.The main components of the other sorting network proposed by Batcher are subnet-works that merge two sorted sequences into a single sorted sequence, denoted odd-evenmerge networks. To our knowledge, no result on generalizing the odd-even merge networkto merge more than two sorted sequences exists.In this dissertation we �rst develop a sorting algorithm for homogeneous product net-works based on merging N sorted sequences into a single sorted sequence (we denote thisoperation multiway merge.) When we apply the sorting algorithm to speci�c networkswe obtain optimal time complexity for some of them, and same complexity as Batcher'salgorithm in the rest.We continue by developing an algorithm to compute the summation of several val-ues initially in the nodes of the network. The algorithm is based on the existence ofan algorithm to compute summations in the factor network. If this basic algorithm isoptimal, the derived algorithm is also optimal. The algorithm is easily adapted to similarproblems. For instance, in the minimum-weight spanning-tree algorithm mentioned laterwe use an algorithm to obtain the minimum of a set of values that is structurally similarto the summation algorithm.We develop a matrix-multiplication algorithm based on the algorithm presented byPreparata and Vuillemin [58] for the mesh of trees and its implementation by emulationin the hypercube. In this algorithm we use the broadcasting algorithm from [86] and thesummation algorithm presented before. We implement the algorithm in several networksand for all of them it yields optimal time complexity.The last algorithmwe present computes the minimum-weight spanning tree of a graph.As we mentioned, this algorithm can be simply modi�ed to solve similar problems. Thealgorithm is derived from algorithms developed by Hirschberg, Chandra, and Sarwate [33]and Shiloach and Vishkin [74]. When implemented in several networks, the algorithm

CHAPTER 1. INTRODUCTION 6of the network to the other in one step. As Thompson [78] pointed out, the exact valueof the bisection width of a graph is, in general, very di�cult to obtain.The crossing number was originally identi�ed as an important parameter of an inter-connection network by Leighton [41]. He showed that it de�nes a lower bound on theVLSI layout area of the network. Like the bisection width, it is not easy to obtain theexact value of this parameter, in general. For instance, there are not known exact valueseven for well-known networks like the hypercube or the cube-connected cycles [76].In this dissertation we de�ne a new structural property of graphs, which we call themaximal congestion, and we use the value of this property for the factor graphs to derivelower bounds on the value of the bisection width and the crossing number. Also upperbounds on the bisection width are derived from the bisection width of the factor graph.The application of these results to several networks shows that the obtained bounds aretight.1.2.3 Embedding PropertiesIn the literature, it has been customary to formalize the notion of emulation with thenotion of embedding [7, 61]. This comes from the property shown by Koch et al [37]that an e�cient emulation between networks can be obtained from an e�cient embed-ding. Therefore, to show that a network can e�ciently emulate another network it isenough to show that the later can be e�ciently embedded into the former. In fact,several researchers compared the computational power of interconnection networks byembedding-based emulations [1, 5, 6, 7, 29].Simple results involving some cost measures of embeddings between product graphshave been presented in [42] and [86]. We strengthen these results and obtain new ones,which allow to derive embedding properties of the product networks from those of theirfactor graphs.In general, the problem of �nding e�cient embedding is not simple. For instance,several papers have been published just on embedding the complete binary tree into thehypercube [8, 13, 14, 22, 23, 31, 45]. The inherent di�culty of embedding problems aside,it is very interesting that we can obtain e�cient embeddings for the product graphs basedon embeddings for the simpler factor graphs. In this context, any previous embeddingresult from the literature can be useful. For instance, we use the embedding proposed byHeckman et al. [32] to obtain an optimal-dilation embedding of the product of completebinary trees onto the grid.1.2.4 AlgorithmsGeneral algorithms have been presented for broadcasting, point-to-point communication,o�-line permutation, and fault-tolerant routing in product networks [4, 24, 56, 86]. Weincrease this collection with algorithms for sorting, computing summations, multiplying

CHAPTER 1. INTRODUCTION 5detail these contributions in the following sections.Examples of recently proposed heterogeneous (i.e. not homogeneous) product net-works are the hyper-de Bruijn network proposed by Ganesan and Pradhan [28], thehyper-Petersen network proposed by Das and Banerjee [20], the banyan-hypercube net-work proposed by Youssef and Narahari [84], and the folded Petersen cube proposed by�Ohring and Das [53]. All of them combine the hypercube with another factor network.They show that the resulting network has some advantages over the hypercube. Alongthese lines, Youssef [85, 86] combined the hypercube with several other networks andanalyzed some of their properties.Also, a few homogeneous product networks have been recently proposed. Rosenberg[61] introduced the two-dimensional product of de Bruijn graphs (which he calls theproduct-shu�e network) as a parallel architecture and has analyzed several of its compu-tational properties1. He showed that this network contains rings, grids, complete binarytrees, and meshes of trees as subgraphs. It can also emulate butteries, shu�e-exchange,and de Bruijn graphs with constant slowdown. Panwar and Patnaik [57] proposed thetwo-dimensional product of shu�e-exchange graphs (which they call the modi�ed shu�e-exchange network) as an alternative to the pure shu�e-exchange graph in solving linearsystems. �Ohring and Das [54] proposed the folded Petersen network, which is the multi-dimensional product of the Petersen graph.Most of the general results obtained in this dissertation are applied to the above net-works and to other homogeneous product networks never previously studied. We speciallyconcentrate in the study of multidimensional products of complete binary trees, shu�e-exchange graphs, and de Bruijn graphs, and show that they are powerful interconnectionnetworks.1.2.2 Structural PropertiesSeveral of the above mentioned references have explored some structural properties ofproduct networks [4, 24, 82, 86]. These properties are trivially obtained from propertiesof the factor graphs. The properties covered by these references are the diameter, theconnectivity, the vertex degree, and the partitionability of product networks.However, other structural properties are more di�cult to be derived and have neverbeen studied before. In this dissertation we concentrate on two such structural propertiesof product networks: the bisection width and the crossing number.The importance of the bisection width of a networks was pointed out by Thompson[77, 78], who showed that it implies an upper bound on the speed of certain computationsin the network and a lower bound on the layout area of the network. In general, thebisection width gives an idea of how much information can be transferred from one side1Rosenberg does not restrict the factor de Bruijn graphs to have same number of nodes. Hence, thesenetworks are not strictly homogeneous.

CHAPTER 1. INTRODUCTION 41.2 Related WorkIn this section we present work conducted by other researchers which, in one form oranother, is relevant to our research. We also briey present our contribution in eachspeci�c area.Since we attempt to perform a comprehensive study of the di�erent aspects of homo-geneous product networks, references in many di�erent areas have been collected here.We organize them in �ve main sections, following a structure similar to the documentitself, in order to simplify the cross reference. The �rst subsection presents referencesabout the cartesian product operation and about product networks as parallel archi-tectures. In the rest of the subsections we refer to publications that inuenced us inobtaining properties of homogeneous product networks in speci�c aspects of the study:structural properties, embedding properties, algorithms, and VLSI complexity.1.2.1 Product NetworksThe cartesian product operation is a very well-known operation in graph theory. Thecartesian product combines two \factor" graphs into a \product" graph. Harary [30]has cited the works of Shapiro [69] and Sabidusi [63, 64] as early studies of the graph-theoretic properties of the cartesian product and product graphs. For instance, Sabidusi[64] showed that any graph has a decomposition into a unique set of \prime" factorgraphs. Several other authors also studied the product operation from a graph-theoryviewpoint [17, 52, 82].Referring to interconnection networks, many widely-used networks are instances ofproduct graphs, obtained by the multiple applications of the cartesian product operation.Examples of these are the grid, the torus, the hypercube, and the generalized hypercube[12]. This fact has been already used, for instance, to obtain and prove several propertiesof the hypercube [42, 62, 87].The product operation has been seen as a unifying framework to the study of speci�cproperties of interconnection networks by several authors. Youssef [86] compiled resultson the structural, routing, and embedding properties of product networks. Baumslag andAnnexstein [4] developed generalized o�-line permutation routing algorithms for productnetworks and used them to create a general strategy for �nding e�cient permutationroutes in arbitrary networks. El-Ghazawi and Youssef [24] studied the connectivity ofproduct networks with respect to the connectivity of the factor network, obtained a lowerbound on the connectivity of a product network, and developed fault-tolerant point-to-point routing algorithms. �Ohring and Hohndel [56] presented fault-tolerant routing algo-rithms for broadcasting, gossiping, scattering, and total exchange, by �nding spanningtrees of the product graph. For a set of speci�c product networks, �Ohring and Das [55]presented dynamic embeddings for dynamically-evolving trees and grids.In this dissertation we compile some of these results and develop many others. We

CHAPTER 1. INTRODUCTION 3research in de�ning new interconnection networks exists for cost reasons. The idealinterconnection pattern is the complete connection of each processor with each other.However, the cost of this interconnection scheme is only a�ordable when the number ofprocessors is small. In general, research in designing new interconnection networks seeksto reach a compromise between cost and power.We mainly evaluate the implementation cost of a network from its vertex degree andits VLSI layout complexity. The two VLSI layout parameters considered are the areaand the length of the longest wire, since they determine the cost of the layout and themaximum speed of the system, respectively.1.1 ApplicationsThe proposed approach is specially suited to the study and implementation of special-purpose parallel architectures. The framework presented allows to evaluate and meaning-fully compare di�erent candidate architectures to solve a concrete problem, and choosethe one that best �ts the requirements and restrictions.The most popular application of these special purpose architectures are embeddedsystems. These are subsystems of a larger system which are in charge of performingspecial tasks within the whole system. Examples are the Viterby decoder, based on thede Bruijn graph, developed by the Caltech's Jet Propulsion Laboratory to be used inthe Galileo mission to Jupiter [18], or the network for template matching that is beingdeveloped in the University of South Florida [60].On the other hand, emulation is one of the key operations in parallel architectures. Inthis context, a parallel systemmay consist of a very large number of very simple processorsand speci�c interconnection schemes may be implemented by emulation. Therefore, thephysical interconnection network must have powerful and exible emulation capabilities.Most of the product networks that we present in this dissertation have this property andthey could be interesting candidates for the task.However, the results obtained in this research are not restricted to special-purposeSIMD architectures. Most of the properties derived are only dependent on the graph-theoretical model of the interconnection network, and not on the computational modelof the system (e.g. SIMD, MIMD, etc.) Therefore, the obtained results on structuralproperties, embedding capabilities, and VLSI complexity are valid even if we are trying todesign a general purpose architecture. Furthermore, although the presented algorithmsassume a SIMD model of computation, they can still run on a general purpose parallelmachine if it is appropriately programmed. Therefore, the results presented here arealso practically applicable to existing general purpose parallel systems, such as the IntelParagon and the Maspar whose interconnection networks are based on the grid, and theNCube and the iPSC/860 whose interconnection networks are based on hypercube, sincethese networks are instances of product networks.

CHAPTER 1. INTRODUCTION 2
Figure 1.1: Construction of the 2-dimensional product of complete binary trees.most of the cases. Among the instances evaluated there are several homogeneous productnetworks never previously proposed as interconnection networks. The evaluation of theproperties of these networks presents them as very powerful and interesting candidatesfor future use as interconnection networks.Surprisingly, to our knowledge, this is the �rst comprehensive study of the productnotation as a unifying framework for the evaluation of interconnection networks. Noprevious reference has presented a collection of general results about product networkslike the ones we show here. The results obtained allow to fully evaluate a new productnetwork and compare its capabilities with other networks.In this dissertation we study interconnection networks as \problem solvers." We studytheir powers as special-purpose architectures, implemented to solve speci�c computa-tional problems. The whole network cooperates to e�ciently perform this task under theSIMD model. This focus relieves us from studying properties that are only meaningfulin the MIMD model of computation, like throughput, bandwidth, hot spots, etc.With this in mind, the two main aspects to be evaluated in an interconnection networkare its power and its implementation cost. The power of a network itself comes from itsseveral properties. First, topological characteristics, like the diameter, bisection width,or connectivity, say much about the potential of the network as a parallel architecture.Second, given our view of networks, the power of a network is mainly shown by devel-oping fast-running algorithms for the network. Although, in general, it is not possible touse the running time of the algorithms to establish that a network is more powerful thananother, since the structure of one or the other might be specially suited for particularproblems, in some cases it gives a clear idea of the potential of the network.Third, the power of a network can be also shown from its emulation capabilities.E�cient emulations transfer all the power of a network into another, giving a way toperform all the algorithms developed for the former in the later. A network H is consid-ered to be at least as powerful as another network G if H can emulate any computationof G with constant slowdown. It is usual to formalize the notion of emulation with thenotion of embedding, and assume H to be at least as powerful as G if there is an e�cientembedding of G into H.Besides the power, the cost is another important factor in a network. In fact, all

Chapter 1IntroductionThe interconnection network is one of the most important elements in a distributed-memory parallel architecture. This is because the interconnection scheme strongly de-termines the capabilities of a parallel architecture. For this reason, designing e�cientinterconnection networks has been at the forefront of parallel computing research.In this dissertation we propose the cartesian product operation (or product, for short)as a unifying framework to study interconnection topologies. Several popular intercon-nection networks fall in the class of product networks (e.g. hypercube, grid, torus) andmany others can be generated. The proposed framework will allow us to evaluate theirproperties and make meaningful comparisons between them.Simply, we obtain the r-dimensional product of the N -node graph G from the r-dimensional N � ::: � N grid by replacing the linear connections of the grid by theinterconnection pattern of G. For example, Figure 1.1 shows the construction of the 2-dimensional product of 7-node complete binary trees. In general, di�erent factor graphscan be used in di�erent dimensions and, hence, several di�erent topologies can be gen-erated. However, in this research we will concentrate on product networks with thesame interconnection scheme for each dimension, which we denote homogeneous productnetworks, for which we can state stronger results.The main results of this dissertation are expressed as rules that derive some propertyof a homogeneous product network from properties of its factor network. The frameworkallows a clean and simple notation to express and prove statements of the form \if Ghas the property A, then the r-dimensional product of G has the corresponding propertyf(A)." The statements themselves are independent of the speci�c graph G and, therefore,fully general. Speci�cally, the rules derived allow us to obtain structural properties, em-bedding capabilities, and the VLSI layout complexity of homogeneous product networks.We also develop general algorithms for several important problems, which are e�cientfor any homogeneous product network.The application of these results to speci�c instances of product networks yields eitherexact values of the studied parameters or bounds on them, that are shown to be tight in1

LIST OF FIGURES x6.3 Transformation of a compact layout into a collinear layout. : : : : : : : : 666.4 Layout for the 3-dimensional hypercube. : : : : : : : : : : : : : : : : : : 686.5 Comparison of the area bounds obtained for PT2(N) and PT3(N), respec-tively. : 726.6 Comparison of the area bounds obtained for PS3(N) and PD3(N). : : : 726.7 Comparison of the area bounds obtained for PB2(N) and PC2(N), andPB2(N) and PC2(N), respectively. : 726.8 Comparison of the maximum wire length bounds obtained for PL3(N). : 746.9 Comparison of the maximumwire length bounds obtained for PT2(N) andPT3(N), respectively. : 746.10 Comparison of the maximumwire length bounds obtained for PS3(N) andPD3(N). : 746.11 Comparison of the maximum wire length bounds obtained for PB3(N)and PC3(N). : 757.1 Embedding meshes of trees into products of complete binary trees. : : : : 777.2 Embedding of the complete binary tree into the two-dimensional productof complete binary trees. : 787.3 Extending the complete binary tree by connecting the leaves. : : : : : : : 80A.1 Embedding the (l+5)-level complete binary tree into a subgraph of TT (2l�1; 2; 7). : 105

List of Figures1.1 Construction of the 2-dimensional product of complete binary trees. : : : 22.1 De�nition of cartesian product. : 102.2 Recursive construction of multi-dimensional product networks. : : : : : : 122.3 The 25-node 2-dimensional grid, PL2(5), and the 25-node 2-dimensionaltorus, PR2(5), respectively. : 152.4 The 3-dimensional hypercube, Q3. : 162.5 The 7-node complete binary tree, T (7). : : : : : : : : : : : : : : : : : : : 162.6 The 2-dimensional mesh of 4-leaf trees. : : : : : : : : : : : : : : : : : : : 172.7 The 8-node shu�e-exchange graph, S(8). : : : : : : : : : : : : : : : : : : 172.8 The 8-node de Bruijn graph, D(8). : 182.9 The 3-level buttery and wrapped buttery, B(24). : : : : : : : : : : : : 192.10 The 3-dimensional cube-connected cycles, C(24). : : : : : : : : : : : : : : 192.11 The Petersen graph, P (10). : 192.12 The 4-node complete graph, K(4). : 204.1 Obtaining G0(NG0) from G(NG) : 315.1 Initial situation before the merge process starts. Each sorted sequence isrepresented as a horizontal block (a row.) : : : : : : : : : : : : : : : : : : 355.2 Situation after step 1: each sequence Ai, i = 0; :::; N � 1, has been dis-tributed into N subsequences Bi;j , j = 0; :::; N � 1. Each of the subse-quences is still sorted. : 365.3 Situation after the recombination of subsequences done in step 2. : : : : 365.4 Situation after merging the subsequences in each row. : : : : : : : : : : : 365.5 Sequence D obtained after interleaving. The order goes from left to righttaking each column from top to bottom. The shaded area is �lled withzeroes and the white area with ones. The boundary area has at most N�1columns, as shown. : 375.6 Clearing of the dirty area. : 386.1 Collinear layout for K(5). : 556.2 Normal collinear layout for K(5). : 58ix

List of Tables3.1 Structural properties of PGr(N) obtained from similar properties of G(N). 233.2 Advanced structural properties of PGr(N) obtained from the values of themaximal congestion, C, the bisection width, B, and B0 of G(N). : : : : : 273.3 Structural parameter of several homogeneous product networks obtainedby application of the presented results. : : : : : : : : : : : : : : : : : : : 295.1 Time complexity of the presented algorithms in several networks. : : : : 526.1 Results on VLSI layout complexity obtained. : : : : : : : : : : : : : : : : 706.2 Bounds on the layout area obtained by application of the presented methods. 706.3 Bounds on the wire length obtained by application of the presented meth-ods. : 707.1 Comparison of the properties of the product of complete binary trees,shu�e-exchange, and de Bruijn graphs. : : : : : : : : : : : : : : : : : : : 887.2 Embedding capabilities of the product of complete binary trees, shu�e-exchange, and de Bruijn graphs. : 89
viii

CONTENTS vii7.4 Discussions and Conclusions : 878 Conclusions 91Bibliography 93Appendix 101Proof of Theorem 7.1 : 101Proof of Theorem 7.5 : 104Abstract 108Biographical Sketch 109

CONTENTS vi3.2.1 Maximal Congestion : 243.2.2 Bisection Width : 253.2.3 Crossing Number : 263.3 Application to Speci�c Networks : 274 Embedding Properties 304.1 General Results : 304.2 Application to Speci�c Networks : 315 Algorithms 335.1 Sorting Algorithm : 345.1.1 De�nitions and Notation : 345.1.2 Multiway-Merge Algorithm : 355.1.3 Sorting Algorithm : 405.1.4 Implementation in Homogeneous Product Networks : : : : : : : : 405.2 Routing Algorithms : 445.2.1 Point-to-Point Routing Algorithm : : : : : : : : : : : : : : : : : : 445.2.2 Broadcasting Algorithm : 455.3 Summation Algorithm : 455.4 Matrix-Multiplication Algorithm : 465.5 Minimum-Weight Spanning-Tree Algorithm : : : : : : : : : : : : : : : : 475.5.1 Pointer-Jumping Algorithm : 485.5.2 The Minimum-Weight Spanning-Tree Algorithm : : : : : : : : : : 495.6 Application to Speci�c Networks : 506 VLSI Layout Complexity 546.1 Foundations : 546.1.1 The Thompson's Grid Model : 546.1.2 Separators : 556.1.3 Bifurcators : 566.1.4 Collinear Layouts : 576.2 Lower Bounds : 586.3 Upper Bounds : 596.3.1 Upper Bounds Based on Bisectors : : : : : : : : : : : : : : : : : : 596.3.2 Upper Bounds Based on Bifurcators : : : : : : : : : : : : : : : : : 626.3.3 Upper Bounds Based on Collinear Layouts : : : : : : : : : : : : : 646.4 Application to Speci�c Networks : 717 Interesting Product Networks 767.1 Products of Complete Binary Trees : 767.2 Products of Shu�e-Exchange Graphs : 817.3 Products of de Bruijn Graphs : 85

ContentsAcknowledgements ivContents vList of Tables viiList of Figures viii1 Introduction 11.1 Applications : 31.2 Related Work : 41.2.1 Product Networks : 41.2.2 Structural Properties : 51.2.3 Embedding Properties : 61.2.4 Algorithms : 61.2.5 VLSI Complexity : 81.3 Organization of the Dissertation : 92 De�nitions and Notation 102.1 Homogeneous Product Networks : 102.2 Structural Properties : 132.3 Embedding Properties : 142.4 Networks of Interest : 153 Structural Properties 213.1 Direct Results : 213.1.1 Number of Nodes and Links : 213.1.2 Diameter : 213.1.3 Connectivity : 223.1.4 Vertex Degree : 223.1.5 Partitionability : 233.2 Advanced Results : 23v

AcknowledgementsFirst, I would like to express my immense gratitude to my dissertation director, Dr.Kemal Efe, for his constant guidance and support. Most of the ideas included in thisdissertation are the result of our intense discussions. Furthermore, he has always been afriend, and that friendship, I am sure, will go far beyond the end of this dissertation.I would also like to thank Dr. Subrata Dasgupta, Dr. Henry Chu, and Dr. Nian-FengTzeng for being members of my committee and helping me to improve the quality of thisdissertation with their comments.Finally, I would like to recognize the role of my family in the realization of this work.Even from far away, they have been always there to help me, solve any problem thatcould arise, and give me their support.I dedicate this dissertation to my mother and the memory of my father.

iv

Homogeneous Product Networksfor Processor InterconnectionAntonio Fern�andez
APPROVED:Kemal Efe, ChairmanAssociate Professor of ComputerScience Subrata DasguptaProfessor of Computer ScienceChee-Hung Henry ChuAssociate Professor of ComputerEngineering Nian-Feng TzengAssociate Professor of ComputerEngineeringJoan T. CainDean, Graduate Schooliii

cAntonio Fern�andez1994All Rights Reservedii

Homogeneous Product Networksfor Processor Interconnection
A DissertationPresented toThe Graduate Faculty ofThe University of Southwestern LouisianaIn Partial Ful�llment of theRequirements for the DegreeDoctor of Philosophy

Antonio Fern�andezFall 1994

