VOLUME V, NUMBER 8

REPORTS ON SYSTEMS AND COMMUNICATIONS

Self-Adaptable Overlays for Unstructured Peer-to-Peer Networks
LUIS RODERO MERINO
LUIS LOPEZ
ANTONIO FERNANDEZ
VICENT CHOLVI

Mostoles (Madrid), Spain, May 2005
Depésito Legal: 50653-2004
ISSN: 1698-7489

Self-adaptable overlays for unstructured peer-to-peer networks

Luis Rodero Merino, Antonio Fernandez, Luis Lopez,
{Irodero,anto,llopez} @gsyc.escet.urjc.es
Laboratorio de Algoritmia Distribuida y Redes
Universidad Rey Juan Carlos
Tulipan S/N
28933 Mostoles (Madrid)

Abstract This paper faces the problem of searching in unstructured peer-to-peer (P2P)
networks. It introduces a novel paradigm of self-organized dynamic overlays whose topology
adapts to the particular traffic offered to the network. The proposed mechanism uses random
walks for resource location and, under this assumption, can be proven to drive the system to
an optimal configuration when the network is in very high or in very low load conditions. A
fully functional implementation of a P2P system based on this approach has been developed.
We present its principles, architecture, and some experimental results obtained through real

ezxecutions of the application.

1 Introduction

Peer-to-peer (P2P) systems have obtained great
popularity during the last few years. The best
known and most widely used application of P2P
technology is the sharing of contents. This ap-
plication was first explored by Napster [16], which
grew extremely fast captivating thousands of users
worldwide and raising an increasing interest in the
scientific community. Other P2P solutions have
appeared incorporating new ideas, like Gnutella
[14], where, unlike Napster, no central server is
present and search is done in a totally decentral-
ized manner, or Kazaa [15], where several nodes
act as "superpeers", with different behavior and
mission than the rest of participants.

Based on these experiences, some authors de-
fine a P2P systems as "a distributed [system],
consisting of interconnected nodes able to self-
organize into network topologies with the purpose
of sharing resources such as content, CPU cycles,
storage and bandwidth, capable of adapting to
failures and accommodating transient populations
of nodes while maintaining acceptable connectiv-
ity and performance, without requiring the inter-
mediation or support of a global centralized server
or authority" [1].

If we look into the mechanism used to locate
contents, P2P systems may be classified into two
categories:

e Centralized. A central repository stores an
index of all resources available in the net-
work, with the location of those resources
(which nodes hold them). All nodes register
their resources and address their searchs to
this repository.

e Decentralized. There is no central reposi-

tory. Queries are forwarded through the net-
work.

Clearly, decentralized systems are closer to the
idea of P2P. They are less vulnerable to attacks or
censorship, and have better scalability since the
P2P system tasks are shared among all network
participants. Decentralized systems may them-
selves be classified by the way new resources are
located in the network:

e Unstructured networks. The placement
of resources is not related with the network
topology. Nodes are also added in a non reg-
ular way. Examples are Gnutella [14] and
Kazaa [15].

e Structured networks. Resources are
placed at precise locations. The location
for every resource is computed by a hash
function. Search is done by means of a dis-
tributed hash table (DHT). Examples are
Chord [13], Pastry [12], Tapestry [17], CAN
[10] and Kademlia [9].

Unstructured networks are, nowadays, the
most used for content sharing. They are simple
to manage and seem to deal better with the orga-
nization overhead under high churn rate of peers.
On the other hand, structured networks are more
efficient locating resources and their search mecha-
nisms scale much better than the techniques used
by unstructured networks. Remark that, on the
latter, location of resources is not deterministic,
content and location are not related and there is
not a tight control on the overlay topology either.
In this situation, two basic search mechanisms are
frequently used.

The first search mechanism is flooding. By this
technic each peer broadcasts its queries to all its

neighbors. If some neighbor has the resource, it
replies to the query source. If not, it forwards
the query to all its neighbors again. There are
two kinds of flooding techniques, Breadth First
Search (BFS) and Depth First Search (DFS). In
both cases, search is limited by a TTL mechanism.
The main drawback of flooding is the lack of scal-
ability (for a deeper discussion on this topic see
[11]). The second search mechanism is the use of
random walks. In this case, nodes forward each
query to only one peer, chosen randomly among
its neighbors. These messages are tipically called
"walkers". The requesting node sends k > 1 walk-
ers. Each walker will follow its own path. This
mechanism introduces less communication over-
head compared with flooding, but it may also take
longer to solve queries. In [4, 7] we can find some
comparisons of both techniques in different net-
work topologies and conditions, concluding that
random walks seem to be a promising technique
suitable to solve the scalability problems of flood-
ing in unstructured networks. The cost to pay is
an increase on the search time for certain topolo-
gies.

In this paper we present a P2P system based on
a self-adapting overlay topology, that changes dy-
namically depending on the load on the network.
Topology moves from a starlike to a random like
one as the load increases. Note that previous re-
sults [5] prove that the starlike topologies are op-
timal (in terms of search time) for non-congested
systems and random-graph-like systems are opti-
mal for high loads. For intermediate loads, hubs
(nodes that have many more incoming connec-
tions than the average) appear. Hubs have a wide
knowledge about the network contents, but are not
central (not all nodes are connected to them), for
this reason, they allow solving queries in few hops
without becoming as congested as central nodes.

This paper is organized as follows: first we in-
troduce the concept of Dynamic Adaptable Net-
work QOwverlay and present some related work.
Then we explain an architecture and a commu-
nication protocol implementing this concept. Fi-
nally we present some experimental results and ob-
tain conclusions.

1.1 Dynamic Adaptable Network
Overlays

When dealing with P2P unstructured networks, it
is well known that the efficiency of random walks
in the search process is highly dependent on the
overlay structure of the system. The approach
traditionally used in the literature to model this
begins by assuming that nodes know their own
resources plus the ones held by their immediate
neighbors. In this case, if some node becomes a
central node (all participants are connected to it)
it will know all the resources present in the whole
system and will be able to correctly answer all

queries. In a starlike topology a few nodes become
central and all nodes in the system are connected
only to them. Hence, all searches are solved in just
one hop.

With this argument we understand that, in a
non congested scenario, the optimal topology is a
highly polarized starlike structure. However, this
situation is inefficient if congestion considerations
become relevant, since the central node may be-
come overloaded. This is supported by the results
in [7], where it is shown that high-degree nodes
(those having most connections) support most of
the shared load. Moreover, it has been proved
[5] that, under the searching model we propose,
the optimal network topology is a homogeneous-
isotropic one in the presence of severe congestion.

1.2 Related work

There are other similar proposals in the literature
of P2P systems where network topology changes to
adapt itself to the network load. In all of them ran-
dom walks are used as the search mechanism, and
networks adapt themselves tending to a power-law
topology. For example, Lv et al. [8] present a sys-
tem where a flow control mechanism avoids nodes
to become overloaded and changes the topology
making messages to flow toward nodes with higher
capacity. To achieve this, every node periodically
tracks the messages it receives. If the node is
overloaded, it redirects the most active neighbor
(the one sending more queries) to another neigh-
bor with higher spare capacity. By this way, high-
capacity nodes tend to have higher degrees, and no
node is overloaded. This solution, nonetheless, re-
quires every node to know the state of all its neigh-
bors, which introduces an important communica-
tion overhead. The simulation results presented in
that work do not take into account this overhead.
In any case, their results support the idea of im-
proving P2P networks efficiency taking advantage
of nodes heterogeneity as we do.

Chawathe et al. in [2] propose a system called
Gia that strives to avoid overloading any of the
nodes by explicitly accounting for their capacity
constraints. Walkers are explicitly forwarded to
high-degree nodes, which should be more likely
able to answer, but having into account their ca-
pability constraints. An active flow control avoids
overloading hot spots: one node can send mes-
sages to some neighbor only if it has notified the
sender that it is willing to accept it. Topology
is also adapted in a continuous manner. Never-
theless, their mechanisms introduce more network
overhead than ours. In our system, when some
node becomes overloaded, their neighbors discon-
nect by their own, so no explicit flow control is
needed. Besides, in Gia nodes need to be aware of
the state (number of connections) of their neigh-
bors. The performance in a real scenario, where

the added overhead should be considered, is un-
known.

Both solutions are interesting and show the po-
tential of using random walks over power-law net-
works built by dynamic network topologies. Never-
theless, our proposal simplifies the proposed mech-
anism, adapts better (optimally) to extreme traf-
fic conditions and offer real benchmark results ob-
tained through the execution of a fully functional
application.

1.3 Reconnection mechanism

The P2P system we propose is based on the cre-
ation of a dynamic adaptable overlay using a
mechanism similar to the one presented in [3].
With this mechanism, the interconnection topol-
ogy changes dynamically in a periodic way, so that
nodes reconnect their links using a particular al-
gorithm to choose wich nodes to connect to. This
algorithm is based on an attachment kernel II;,
which determines the probability of a particular
node to be connected /rewired to node i. The pro-
posed kernel has the form

T o k) 1)

where k; denotes the number of links of node 7 and

(2)

L 2if ¢; < threshold
T 0 otherwise

where ¢; refers to the load on node ¢. Originally
this was measured in queries per unit of time, but
our implementation uses the number of pending
queries as load metric (see section 4.2). Nodes can
store as many queries as needed, but can deliver,
on average, a limited number of them at every time
step. If the node receives more queries than it can
process it gets collapsed.

The rationale behind Equation 1 and 2 is ex-
plained as follows. First, we note that by tak-
ing a value of 7; = 0 for all nodes, we obtain a
random topology (intuitively, all nodes have the
same probability of being chosen for a new con-
nection [6]); in turn, if the value of ~; is strictly
greater than 1, we obtain a starlike (the more con-
nections one node has, the more likely it will be
chosen by other nodes, finally building a starlike
topology [6]). Consequently, in [3] is established
that the value of 7; will be either 2 if the node is
not collapsed and 0 otherwise. Thus, the network
will evolve towards a random-like topology when
the nodes become collapsed, or towards a starlike
topology otherwise. It is easy to realize that the
value of ; for not collapsed nodes has a strong
impact on the way topology evolves. In section
4.1 we explain and justify the value of v; we have
used in our experiments.

2 System implementation

We have implemented a P2P system where nodes
use the reconnection mechanism described in sec-
tion 1.3.

2.1 Communications protocol
Nodes communicate by a simple protocol, with the

following types of messages:

CONNECT Petition to stablish a connection with
another node.

ACCEPT Reply sent to a CONNECT message if the
node accepts the connection. Nodes will exchange
their lists of resources afterward.

REJECT Reply sent to a CONNECT message if the
node rejects the connection.

RESOURCES _LIST Message containing part of
the resources list of the sending node.

DISCONNECT Disconnection message.

LOOK_FOR__NODES
nodes. It has a TTL.

Message to look for other

NODES_FOUND This message is sent to the orig-
inal sender of an associated LOOK_FOR_ NODES
message, containing the list of nodes traversed by
the latter, when its TTL reaches 0.

LOOK _FOR_RESOURCE Message for searching
resources. It has a TTL.

RESOURCE _FOUND When some resource is found,
a RESOURCE__FOUND reply is sent directly to the
query source node.

RESOURCE _NOT FOUND When the TTL of
some search gets to 0, a RESOURCE _NOT _FOUND
message is sent directly to the query source node.

Messages are sent using UDP. We ensure that
the resulting UDP packet size is smaller than the
typical MTU to prevent fragmentation. We have
implemented an ACK mechanism to add some re-
liability to the communication. This ACK mech-
anism is optional, except for the messages to
manage connections: CONNECT, ACCEPT, REJECT,
DISCONNECT, RESOURCE _ LIST.

Connections are directed, i.e., if some node Ny
connects to another node N, N; — N, then the
connection is said to be an N; outgoing connec-
tion to Ny and an N incoming connection to Nj.
Nodes can send queries through any of their in-
coming or outgoing connections, and only through

them. Nodes can only close their outgoing connec-
tions. It is possible that, having already a connec-
tion Ny — Ny, N> connects to Ny, N; < Ns.
This would mean that if NV; disconnects from Ny,
communication between these nodes would still be
possible through the connection N7 < Na.

To ease the comprehension of this section
we give some notation. out(N;) denotes the
set of nodes that have an incoming connection
from N;; in(N;) denotes the set of nodes that
have an outgoing connection to N;; conn(N;) =
out(N;) U in(V;)

2.2 Reconnection process

To keep adapting the network topology to the
load, a reconnection process is triggered period-
ically. All nodes have a constant number of out-
going connections, that are (possibly) changed at
every reconnection. The reconnection process is
done in three steps: (1) A list of candidate nodes
is obtained by sending a LOOK _FOR__NODES mes-
sage and waiting the NODES_FOUND reply. (2)
The set of nodes to which to connect is computed
by the attachment kernel function. Those nodes
are chosen from the list of candidates. (3) The
new outgoing connections to the chosen nodes are
built. If an old outgoing connection was in the list
of chosen nodes, then the connection is just kept.
The node disconnects from the rest of old outgoing
connections.

2.3 Resources

Each node N; has a local set of resources, de-
noted localRes(N;). Tt also knows, for each
node it is connected with, the resources that
node has. That knowledge is lost when con-
nections are closed. We denote the total set
of resources known by N; as knownRes(N;) =
local Res(N;) U (U, € conn(n;) local Res(N;))

When a node N; starts the search for some re-
source res, it first checks if res € knownRes(N;).
Ifnot, a LOOK _FOR__RESOURCE query is built and
sent to some randomly chosen N; € conn(N;).
All nodes are able to start, process, reply, and
forward queries. When one node N; receives a
query started by another node N; for some re-
source res, it first checks if res € knownRes(Nj;).
If so, a RESOURCE_FOUND reply is sent directly
to ;. If not, the search TTL is decremented
by 1. If the TTL becomes 0, then a RE-
SOURCE_NOT _FOUND reply is sent to IV;. Other-
wise, the LOOK _FOR__RESOURCE message is for-
warded to some neighbor Ny € conn(N;) chosen
at random.

3 Node architecture

The system is implemented in Java. The node
design is shown in Fig. 4. The system is formed
by the following parts:

Communications Layer It takes care of send-
ing and receiving messages. It implements the
ACK mechanism.

Packet Listener . It continously gets incoming
messages through the Communications Layer
module.

Messages Queue Set It holds all the in-
coming messages that are waiting to be pro-
cessed. Messages are held in three queues, each
one with a different priority. The Connections
Queue holds connection process messages and
has the maximum priority; the Searchs Results
Queue holds NODES_FOUND, RESOURCE_ FOUND
and RESOURCE__NOT _FOUND messages and has
medium priority; the Search Petitions Queue holds
LOOK_FOR__ NODES and LOOK__FOR__ RESOURCES
and has the minimum priority.

Message Attender Thread Pool Pool of
threads that process messages read from the Mes-
sages Queues Set module.

Connected Nodes Set It contains the list of
incoming and outgoing connections of this node. It
also holds the list of resources of every connected
node.

Dynamic Network Topology Kernel It im-
plements the Kernel Reconnection Function. Ev-
ery time a reconnection process is run, this module
computes the nodes the system should connect to.

Forward Resolver When a message is for-
warded this module is called to decide which node
the message must be sent to.

Connections Accepter It implements the con-
nections acceptance policy. When a CONNECT
message is received this module decides whether
the connection is accepted or not.

Reconnecter Periodically starts a new recon-
nection process. It uses the Node Finder to get
the list of candidates.

Node Finder It looks for other nodes, sending
search messages and collecting the results.

Resource Finder It looks for resources, send-
ing search messages and collecting the results.

4 Experimental setup

A set of experiments have been run with the sys-
tem described above. The results are shown in
section 5. In this section we describe the setup of
the experiments.

Experiments were done with 42 nodes in a clus-
ter of 8 PCs. There were 6 virtual nodes by com-
puter, the PC left was used to host a Subscription
Service.

Each node held a set of 2000 resources,
|local Res(N;)| = 2000. Every resource is held
only by one node: local Res(N;) (local Res(N;) =
0,VN;, Nj, N; # Nj.

ACKs are not used in communications. Each
node reports its state to the Subscription Service
every 15 seconds, and triggers a new reconnection
process every 30 seconds. Each node keeps three
outgoing connections.

Queries are done by virtual users. There is one
per per node, and all make queries with a fixed fre-
quency, that varies for each experiment. The vir-
tual user chooses uniformly and randomly which
resource to ask for among all the resources in the
network.

The congestion threshold also changes for each
experiment. A lesser threshold means that nodes
become collapsed more easily. Then, for the same
query frequency (same load on the network), the
topology will be more decentralized.

We have added an artificial delay to every
query processing to increase reply times and be
able to overload high degree nodes with less par-
ticipants in the network. This delay consists sim-
ply on executing an empty loop every time two
resources are compared. The loop iterations num-
ber is an experiment parameter.

Experiments last 2 hours each. Queries
launched during the first 10 and last 50 minutes
are discarded from the results.

4.1 Nodes connections

The communication protocol makes possible for
some node to reject a connection request. For this
experiments, nodes were configured to accept all
connections.

The +v; value for the attachment kernel func-
tion has been set to 2.5 instead of 2 as in the the-
oretical model of [3]. The reason was to increase
the attractiveness of high degree nodes so topology
would evolve faster and these nodes would keep
their incoming connections. Note that if k]* does
not reach high enough values, then nodes will dis-
connect from central nodes or hubs with a non
negligible probability.

Normally, each node decides which other nodes
to connect to by applying the Kernel Function to
a list of candidates. Thus, an important point is
how to obtain that list of candidate nodes.

We have developed a Subscription Service
where all nodes can subscribe and send informa-
tion about their state. When nodes subscribe,
they also get some experiment parameters. The
Subscription Service is also used to provide the
list of neighbors a new node must connect to
at start time. In all experiments the network
topology starts in a random state. Nodes also
send information about their state (congestion and
connections) periodically. Thus, we avoid using
LOOK _FOR__NODES messages, as we want, to eval-
uate the influence of resources searchs only. Peers
ask the Subscription Service which nodes they
must connect to in every reconnection.

4.2 Congestion computation

There is one important different between our im-
plementation and the model presented in [3]: the
way node’s load is computed. In [3], a node’s load
is the number of queries that node has received
during the last unit of time. Nonetheless, we re-
alised than in heterogeneus networks nodes con-
gestion depends not only on the messages received,
but also on the processing capacity of those nodes.
The more capacity some node has, the less con-
gested it will get for the same number of messages
received.

We found out that a more realistic conges-
tion metric is the number of pending messages. If
two nodes receive the same amount of queries, the
queue size will be smaller for the node with higher
processing capacity. If two nodes are equally able
to process messages, then the node that receives
more messages will have a bigger queue.

5 Experimental results

5.1 Topology adaptability

First, we show how network topology adapts itself
depending on the network load.

Initially, topology is in a random state. Then,
it evolves and changes as reconnections are done.
New connections are stablished depending on the
kernel function. When the network load is small,
nodes tend to form a starlike topology, see for in-
stance Figure 1, where three nodes have become
central. This topology is built with threshold (this
is, node capacity) of 10, and load of 5 petitions per
minute and node.

Figure 1: Topology with threshold 10 and 5 peti-
tions per min

With the same threshold, but increasing the
load to 10 petitions, we have the topology show in
Figure 2. Here, we see that the network is not to-
tally centralized. There are nodes that have many
connections (hubs) but are not central.

Finally, we increase the load to 15 petitions per
minute, resulting in the topology shown in Figure
3. Here the network is totally random. No node
has many connections because it inmediately be-
comes overloaded and neighbors disconnect from
it.

V>
7

A
" ",

9,
Yo G4
“‘\\ N "; 3;‘
SN AT
=

v é'vl '

77
4
”/’O;’
7
NS b
LN

Figure 2: Topology with threshold 10 and 10 pe-
titions per min

J,

/v
=
|

11
Ly

A v//‘

VIS
S
%

o

AN

\
2
7,
/.

Figure 3: Topology with threshold 10 and 15 pe-
titions per min

5.2 Search performance

Now, the search mean time is evaluated. Exper-
iments have been executed for different network
loads and nodes thresholds. The network load is
measured in terms of petitions per minute trig-
gered by each node.

In Figure 5 and 6 we present the results of ex-
periments for loads of 2, 4, 6, 8, 10, and 12 peti-
tions per minute, and with thresholds of 0, 10, 50,
100, 1000, 10000, and 1000000. Note that setting
the nodes threshold to 0 means that nodes will
always be collapsed, and the topology will be ran-
dom. To force a centralized topology, the nodes
threshold is set to 1000000 (nodes will never have
a congestion greater than that). In experiments
with intermediate thresholds, the topology is cen-
tralized with low network load, moving to a ran-
dom state as the load increases.

For low load, we see how the random network
(the one with threshold 0) has the worst mean
search time. The other networks are all centralized
and their search times are similar.

Another thing to note, is that the centralized
network becomes the worst one at load 10, since
it has the biggest mean search time. At the same
time, the random network is the fastest. The other
networks lay between these two. This agrees with
[5].

As the network load increases, the systems
with high thresholds get slower at a higher rate
than the systems with low thresholds. The ran-
dom network keeps being the fastest, and the cen-
tralized the slowest. But it appears that networks
converge as there is more load on the network.
This is logical, the bigger the load, the closer the
topologies are to the random state for all thresh-
olds (remember that random is optimal).

Nonetheless, three experiments appear with re-
sults that do not seem to fit to what theoretically
we should get. See, in Figure 5, the results for
experiments with load 6 and threshold 10, load 8

and threshold 100, and load 8 and threshold 50.
Their mean search times are the biggest, while
these times should be between those for random
and central networks. We have found out a side
effect, not foreseen in previous literature, that pe-
nalizes certain threshold networks (depending on
the load) and could explain these results. Nor-
mally topologies tend to form central nodes or
hubs. The more connections some node has, the
more nodes will try to connect to it. But when
there is a high query load on the network, hubs
will not be able to process queries fast enough.
When finally the hub becomes congested (by any
congestion computation metric used), it sharply
stops being attractive and its neighbors will dis-
connect from it, then it will lose all the knowledge
about those nodes. The problem arises here: it
becomes a "regular" node, but most likely it still
has many queries on its queue, queries that will
take a large time to process and that it will likely
not be able to complete itself. When hubs appear
and disappear at a high rate then this effect penal-
izes total search times. A solution to this problem
could be the use of resources caches in nodes.

Finally, we see that we have found one thresh-
old, threshold 10, that seems optimal or close to
optimal for all loads (save for load 6, as is ex-
plained above). This suggests that, depending on
some parameters of the network, there is certain
threshold that minimizes the search times for all
loads.

Is important to note that our experimental re-
sults agree with those obtained by simulations in
[3], where our reconnection model was introduced.
This encourages us to keep working on this line of
research.

6 Conclusions and future work

In this paper we have introduced our implemen-
tation of a P2P system with Dynamic Topology
Adaptation. The results show how the topology
adapts itself depending on the load of the network,
trying to keep close to an optimal topology. This
system does not require nodes to keep information
about their neighbors state, and does not need a
explicit flow control mechanism so the total net-
work overhead is smaller than in other systems
(e.g. [8] and [2]) that also use dynamic topologies.

Nonetheless, this system is far from optimal.
There are many improvements that can be done
for a better performance. Some of them are: avoid
sharp topology changes, as they can have impact
on search times; use resources caches on nodes;
use Bloom filters to compact the list of resources
of neighbor nodes; evaluate other forwarding poli-
cies that could have better performance than ran-
dom forwarding; and look for better node search
methods (like agents).

References

1]

2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Stephanos Androutsellis-Theotokis and Dio-
midis Spinellis. A survey of peer-to-peer con-
tent distribution technologies. ACM Comput-
ing Surveys, 36(4):335-371, December 2004.

Yatin Chawathe, Sylvia Ratnasamy, Nick
Lanham, and Scott Shenker. Making
gnutella-like p2p systems scalable. In Pro-
ceedings of the 2008 conference on Applica-
tions, technologies, architectures, and pro-
tocols for computer communications (SIG-
COMM 2003), pages 407-418, Karlsruhe,
Germany, August 2003.

V. Cholvi, V. Laderas, L. Lépez, and A. Fer-

néndez. Self-adapting network topologies
in congested scenarios. Physical Review E,
71(3), 2005.

George H. L. Fletcher, Hardik A. Sheth, and
Katy Borner. Unstructured peer-to-peer net-
works: Topological properties and search per-
formance. In Proceedings of the Third In-
ternational Workshop on Agents and Peer-to-
Peer Computing, New York, New York, USA,
July 2004. To be published by Springer.

R. Guimera, A. Diaz-Guilera, F. Vega-
Redondo, A. Cabrales, and A. Arenas. Opti-
mal network topologies for local search with
congestion. Physical Review Letters, 89,
November 2002.

P. L. Krapivsky, S. Redner, and F. Leyvraz.
Connectivity of growing random networks.
Physical Review Letters, 85:4629-4632,
November 2000.

Qin Lv, Pei Cao, Edith Cohen, Kai Li, and
Scott Shenker. Search and replication in un-
structured peer-to-peer networks. In Pro-
ceedings of the 16th international conference
on Supercomputing, pages 84-95, New York,
New York, USA, June 2005.

Qin Lv, Sylvia Ratnasamy, and Scott
Shenker. Can heterogeneity make Gnutella
scalable? In Revised Papers from the First
International Workshop on Peer-to-Peer Sys-
tems, pages 94-103, Cambridge, USA, March
2002.

P. Maymounkov and D. Mazieres. Kademlia:
A peer-to-peer information system based on
the xor metric. In Proceedings of the First
International Workshop on Peer-to-Peer Sys-
tems, pages 53—65, Cambride, USA, March
2002.

Sylvia Ratnasamy, Paul Francis, Mark Han-
dley, Richard Karp, and Scott Schenker. A

scalable content-addressable network. In Pro-
ceedings of the 2001 conference on Applica-
tions, technologies, architectures, and pro-
tocols for computer communications (SIG-
COMM 2001), pages 161-1672, San Diego,
California, USA, 2001.

Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of the
2001 conference on Applications, technolo-
gies, architectures, and protocols for computer
communications (SIGCOMM 2001), pages
149-160, San Diego, CA, USA, 2001.

[11] Jordan Ritter. Why gnutella can’t scale. no, [14] The gnutella website.
really. Technical report. Electronic format in http://www.gnutella.com.
http://www.darkridge.com/ jprs/doc/gnutella.html.

15] The kazaa website. http://www.kazaa.com.

[12] Antony I. T. Rowstron and Peter Druschel.

Pastry: Scalable, decentralized object loca- [16] The napster website.
tion, and routing for large-scale peer-to-peer http://www.napster.com.
t . In P di the IFIP/ACM
Systems. - i T0cecaings of e /AC [17] Ben Y. Zhao, John D. Kubiatowicz, and An-
International Conference on Distributed Sys- .
B . thony D. Joseph. Tapestry: An infrastruc-
tems Platforms, pages 329-350, Heidelberg, ; .
ture for fault-tolerant wide-area location and
Germany, 2001. . . o .
routing. Technical report, University of Cali-
[13] Ion Stoica, Robert Morris, David Karger, fornia, Berkeley, 2001.

M. Frans Kaashoek, and Hari Balakrishnan.

_)| Dynamic Network Topology Kernel |

v 1 v

Connected Node 1
Nodes Set Node 2
_)| Forward Resolver |
wogen [> TTTTT]
Resources Lists <
T T A A
Connections Reconnecter
L 1 Accepter
—> 4
Connections Queue
C >
>
C —> Searchs Results Queue —> Node Finder Active Searchs D:l:D
Search Petitions Queue C
Packet Attender >
Listener Messages Queues Set Thread Pool Resource Finder[] Active Searchs D:l:l]

l A 4

Communications Layer

LITTTTTTTITTITTTTTTTT knownnodeswist

Mean search time (ms)

Figure 4: Node Architecture

1le+07

threshold 0 ——
1e+06 .
threshold 50 ------ p e
threshold 100 &
threshold 1000 --m—
threshold 10000 ---&--
threshold 1000000 ----e---

100000 [

10000 [

1000

100 1 1 1 1 1 1

Load (pets/min)

Figure 5: Mean times against load, for different
thresholds (log scale)

Mean number of Hops

5F threshold 0 —+—

4+ threshold 1000 —-m--

threshold 10 ---x---
threshold 50 ---*---
threshold 100

=
-
threshold 10000 ---e---
threshold 1000000 -------

Load (pets/min)

Figure 6: Mean number of hops against load, for
different thresholds

