
VOLUME V, NUMBER 1

REPORTS ON SYSTEMS AND COMMUNICATIONS

Design and Implementation of an Ad-Hoc Routing
Protocol for Mobile Robots

Carlos Agüero, Vicente Matellán, José Maŕıa Cañas and Pedro
de-las-Heras-Quirós

Móstoles (Madrid), December 2005
Depósito Legal: 12345

ISSN: 67890

Table of Contents

Communications

Design and Implementation of an Ad-Hoc Routing Protocol for Mobile
Robots . 1
Carlos Agüero, Vicente Matellán, José Maŕıa Cañas, Pedro

de-las-Heras-Quirós

Design and Implementation of an Ad-Hoc
Routing Protocol for Mobile Robots ?

Carlos Agüero, Vicente Matellán, José Maŕıa Cañas, and Pedro
de-las-Heras-Quirós

Universidad Rey Juan Carlos
C/ Tulipán s/n, Móstoles (Madrid, España)

{caguero,vmo,jmplaza,pheras}@gsyc.escet.urjc.es
Robotics Group

Abstract. Mobile robots need to be able to communicate among them,
as well as with hosts participating in the task all of them are involved
in. Wired networks are obviously not suitable for mobile robots. Cur-
rent wireless networks based on fixed infrastructure (GSM, WiFi, etc.)
to route packets are neither suitable because this infraestructure does
not cover every place. The best alternative for mobile robots are Ad-Hoc
networks, which are wireless networks that do not need a fixed infras-
tructure. This article describes PERA, an adaptation of a well-known
Ad-Hoc routing protocol for mobile robots with reduced communications
capabilities. This protocol has been iplemented and tested on Eyebot mo-
bile robots. Robots using PERA can send messages to other robots or
hosts that are not directly reachable through its radio antenna covarage,
by routing messages through intermediate mobile robots also running
PERA. The design, implementation, testing and lessons learned in de-
velopment of PERA are presented in this article.

keywords: mobile robots, communications, ad-hoc networks, protocol

1 Introduction

Communication capabilities are nowadays an indispensable component of any
robot, both to let human users interact with them, or to let groups of robots to
communicate among them. Obviously, mobile robots require wireless technolo-
gies.

Wireless networks can be classified into two groups attending to their de-
pendence of fixed infrastructure: Infrastructure based networks and Ad-Hoc net-
works. In the first ones, mobile nodes communicates through different types of
infraestructure, large antennas in cellular telephony are a classical example, or
Access Points (AP) in the case of WiFi. That is, the mobile node sends infor-
mation to a fixed network, where the location (anntena or AP) where the other
mobile node can be located has been kept, and the information is sent there.
? Work suported in part by CYCIT grant No. TIC2001-0447 and by Comunidad Aut-

noma de Madrid grant No. 07T/0004/2001

2

The second ones does not use any fixed infrastructure, the mobile nodes are
themselves routers, and the whole group of robots will be incharged of delivering
data to destination. This kind of technologies are very useful in many situations:
Let’s imagine a group of mobile robots working in a rescue situation [11]. In
this kind of environment the communication infrastructure may had be severely
damaged, so robots could only trust on their own capabilities to communicate
among them. If a robot would find a victim, it should be desirable that it would
be able to send for instance, images to the mobile host where a human operator is
supervising the rescue mission. Tipically, this operator will be out of the robot’s
radio range, so it will need other robots to relay its data.

Classical routing protocols as the ones used in fixed networks (i.e. IP in
Internet) are not well suited for Ad-Hoc networks, because their routing tables
do not stabilize under frequent changes in connectivity by the mobile nodes.

Besides the routing protocols problems, most extended wireless technologies,
i.e. WiFi (IEEE 802.11 standard), cannot be used in many robots. For instance,
very small robots hardly can carry the hardware, and more important, they
cannot afford the battery cost of Wi-Fi technology, neither the computational
power required, nor the communications required (adresses space for instance).
In those robots propietary radio communications are usual.

In summary, routing protocols used in wired networks are not a good choice to
communicate mobile robots. These protocols assume that the network is fixed,
that the batteries are always full and they also assume that the bandwidth
is constant. None of these assumptions do hold in mobile robots. Alternative
protocols have been proposed that have better efficiency because they take into
account the special features of robots. We can divide them into two different
groups: based on routing tables and based on on demand routing.

Robots using protocols based on routing tables have to maintain a table
that allows them to route to any destination. This kind of protocols send lots
of routing information for updating changes in the network connectivity. These
are examples of this category of protocols: DSDV (The Destination-Sequenced
Distance-Vector Routing Protocol) [10], CGSR (Clusterhead Gateway Switch
Routing) [12] and WRP (The Wireless Routing Protocol) [7].

On the other hand, protocols based on on demand routing only store in their
tables the routes that are really needed. When a packet addressed to an unknown
destination will be received by a robot, a route discovery process will be initiated
on demand in order to learn a new route. A route maintenance process is also
needed to update the routes learned and to delete unused routes. Some examples
of this category are: AODV (Ad Hoc On-Demand Distance Vector Routing)
[8], DSR (Dynamic Source Routing) [6], LMR (Lightweight Mobile Routing) [3],
TORA (Temporary Ordered Routing Algorithm) [8], ABR (Associative-Based
Routing) [14] and SSR (Signal Stability Routing) [5].

In this paper we describe PERA [1], which is an ad-hoc protocol designed
taking into account the special requirements of small mobile robots. PERA is
a protocol inspired in the AODV (Ad-Hoc On-Demand Distance Vector) [8]
routing protocol. PERA implementation has been programmed as a library that

3

Fig. 1. Eyebot robot

can be used by robot applications that need to exchange messages among robots
with independence of the radio scope of the robot.

The implementation of PERA described in that paper has been tested on the
Eyebot mobile robot (figure 1). Eyebot robots are equipped with three infrared
sensors, two encoders and a camera. In addition, robots are supplied with a radio
communication module that is used by PERA. All those devices are managed
by the RoBios operating system. The PERA library is built using the RoBios
API.

The rest of the paper is organized as follows: the PERA protocol specification
is presented in section 2. Section 3 describes the design of the PERA library.
Finally, the implementation, and the tests made on the Eyebot mobile robots
are described on section 4.

2 The PERA Ad-Hoc routing protocol

PERA has been designed to fulfill the following requirements:

– Every robot should be able of sending data to any other robot.
– Every robot should be ablo of receiving data from any other robot.
– Movement of robots has to be allowed without disturbing ongoing commu-

nications.
– Multiple applications running concurrently on the same robot can use PERA

in order to send / receive data independently of each other.
– Every robot should be able of sending data to a particular application run-

ning on a given robot (end-to-end communication).
– The library providing the PERA protocol should allow to choose between

unicast and multicast transmission.

These requirements are not always possible to fulfill, in particular, when a
path of intermediate robots is not available between the source robot and the
destination robot of a message, obviously PERA can not help in this point.

4

Besides the previous requirements, that refers to the protocol itself, the im-
plementation is going to be tested on Eyebot robots. The major limitations that
Eyebot robots pose to PERA lie on the RoBios OS. For instance, the maximum
size of a data packet is limited to 35 bytes when sending between adjacent robots.

Some protocols based on on demand routing include the complete path in
each data packet. This path is included in the packet when it is first sent, so
that intermediate nodes can route the packet by consulting the path included
on it. Due to the small size of data packets, this option was discarded.

PERA uses a protocol based on on demand routing that is table driven: each
mobile robot maintains a table with routes. Packets only contain the address
of the destination robot. Any intermediate robot which receives a packet which
is not addressed to it, will consult its table in order to choose the next hop.
Contrary to what happens in protocols based on routing tables, as the ones
used on the Internet, the protocol used in PERA only updates these tables on
demand. Tables are also created on demand.

So, there are two main tasks that the routing protocol must fulfill: route
discovery and route maintenance, which are used, respectively, to create an entry
in the table when a packet must be routed to an unknown destination, and later,
for keeping updated a given route in case it is still needed. For this reason, each
entry in the routing table can be erased or updated.

The lifetime field, combined with a sequence number field ensure that a robot
does not use old routes, and that routing cycles do not exist.

2.1 Route discovery

This process will be triggered by a robot when it would like to send a packet to
another robot and there is not an active route for the desired destination on its
routing table.

The process is started by the sender that composes an RREQ (Route Request)
packet, which includes the identifier of the sending robot and a locally generated
RREQ ID, togehter these will identify the request uniquely in the net of robots.
Then, the robot broadcasts this message. Closeby robots that receive this RREQ
must rebroadcast the packet. By flooding this initial message, the route discovery
process ensures that the destination, in case it is reachable through any existing
route, will be reached by this RREQ message.

All robots must check the ID and the origin of the RREQ in order to avoid
unnecessary flooding. This way an RREQ that has been previously received and
resent by a given robot will not be sent again. The RREQ ID is incremented
each time a new route discovery is initiated, so that when the conditions of
connectivity change a new route discovery will not be discarded by intermediate
robots.

Each time an intermediate robot receives an RREQ, it learns the reverse
route to the source of the RREQ: the next hop is the neighbour robot that has
sent this RREQ to us (we assume symmetrical links).

If an RREQ is received by the final destination, that robot will send back an
RREP (Route Reply) packet addressed towards the source of the RREQ received.

5

This RREP packet is sent following the reverse route that followed the RREQ.
This reverse route has been already learned and stored by the intermediate
routers when the RREQ was flooded. When the RREP reaches an intermediate
robot, it learns the reverse route towards the origin of the RREP, and stores it
on its routing table. Note that this is exactly the routing information that was
originally seeked for by the robot that initiated the route discovery.

An optimization that accelerates the pace of route discoveries is used in
PERA. When a robot receives an RREQ, even if it is not addressed to him, it
can reply with an RREP in case it already knows a route to that destination. The
advantage of this hack is that RREQ’s don’t need to be flooded everywhere in
the net of robots, in case someone already knows a route that is being discovered.

Fig. 2. Route discovery

Let’s us consider a simple example to illustrate the process. For instance,
consider the scenario of figure 2, where circles represent the radio range, and
were all routing tables are empty. In this situtaion, robot A wants to send some
information to robot D. First, A needs to discover a route towards D. It is thus
necessary to initiate a route discovery process. Robot A creates a RREQ packet.
This packet contains the source node address (A) and the current sequence
number at node A, as well as the destination address (D). The RREQ also
contains a broadcast ID (1), that is incremented each time the source robot
initiates a new RREQ.

After creating the RREQ, robot A broadcasts the packet. When neighbour
robot B receives it, it first checks whether it has seen this RREQ before, by
checking the source address and broadcast ID pair. Each robot maintains a
record of the source address / broadcast ID for each RREQ it receives.

In this example, robot B processes the packet. Robot B learns how to route
packets to A and stores this information on its routing table. Then, robot B
broadcasts the RREQ to its neighbors. This second RREQ is received by robot
A, that silently discards the packet because it recognizes it as a packet already
broadcasted by him (in fact A was the originator of this RREQ). However, robot
C, that also receives the RREQ sent by B, rebroadcasts it to its neighbors, after
storing on its routing table a new route towards A that passes through neighbour
B. When robot B receives the RREQ broadcasted by C, it discards the packet.

When node D receives the packet broadcasted by C, it learns a route towards
A, that passes through C. Then, it unicasts an RREP packet back to the source
A. Now, node D already knows to which neighbour it must send the RREP

6

addressed to A, that is C. The RREP then reaches C, that in this way learns
a route towards node D, and stores it on its routing table. Then, C checks its
routing table and there it sees that the RREP addressed to A must be sent to
B. When B receives the RREP, it learns a route towards D (through C) and
stores it on its routing table. Finally, after checking its routing table, B sends
the RREP directly to A. When A receives the RREP, it finally stores on its
routing table a route towards D (through neighbour B).

This concludes the discovery process in our example, once A has finally
learned a route towards D. Now A can send the data to D, using a DATA
package type (see section 3 to know the format of this package). Each time a
robot sends a packet to a neighbour, it expects to receive an ACK from it. In
this way, source robot knows its packets are being routed.

2.2 Route maintenance

If a route is affected by the movement of an intermediate robot, an RERR (Route
Error package) packet will be sent towards the source of data in order to inform
him that the route is no longer available. This RERR is sent by the robot that
is one hop before the culprit, when it sends packets to the culprit and does not
receive an ACK for them (because the culprit is too far away after moving).

When a neighbour receives a RERR, it deletes its routes towards the un-
reachable robot, and then propagates the RERR. When an RERR is received
by its destination robot, it initiates a new route discovery.

Neighborhood information is learned through broadcasts sent by neighboring
robots. Each time a robot receives a broadcast from a given neighbour, it updates
a lifetime field associated with that neighbour in its routing table. If at that time
there is no entry for that robot in the table, the robot creates one. In addition,
all robots broadcast a Hello packet to inform its neighbors periodically that it
is still in the vicinity. Lifetime field is decremented as time passes.

3 Design of the PERA library

We have built a communications library that can be used to send messages
between any pair of robots in a herd, even when they are not directly reach-
able. This functionality drastically increases the possibilities of communication
between Eyebots provided by the RoBios library.

The PERA library is structured in hierarchical modules following a tradi-
tional communications stack architecture. Each level in the hierarchy provides
services to the level above, and uses services of the level below through well
defined interfaces. In this way it can be easily ported among different types of
robots.

In PERA we have consdered four levels, ordered from lowest to highest in
the hierarchy: link, net, transport and application, following the TCP/IP archi-
tecture. Each layer has an independent goal explained in the next subsections.

7

3.1 Link layer

The service this level provides to the net layer is a transmission channel between
neighbour robots. This layer is the only one that depends on the type of robot.
In case we want to use the PERA library with other robots (Lego, Pioneer,. . .),
other links layer must be implemented, adapted to the physical communication
channel.

The functions of this level are to send and receive data to / from robots that
are directly reachable through the Eyebot radio (in Eyebot the range is about
1.5-2 m.).

As the Eyebot robots allow more than one application to run simultaneously
in one robot (see section 3.3). This feature forced us to develop a new non-
blocking receive function in this layer.

3.2 Net Layer

The service offered by this layer to the transport layer is the routing of packets
between any pair of robots, even if they are not neighbours. This is core layer
of PERA. It is here where we find the routing algorithms that PERA uses, and
where some data structures are implemented in order to store routing and control
information.

Addressing We have created an addressing scheme adapted to the peculiarities
of the Eyebot communications infrastructure. Each robot must have an unique
address. PERA uses one byte of each packet for this purpose, subdivided in three
fields (see 1).

Unic./ Host 3 Host 2 Host 1 Host 0 Port 2 Port 1 Port 0
Mult.

0 1 2 3 4 5 6 7

Table 1. Addressing scheme

First field (bit 7), selects between a unicast or multicast address. When bit
7 is set to 0, it specifies an unicast address and when it is set to 1 it specifies
a multicast address, that is an address that does not represent a single robot,
but a set of robots. The second field (bits 6-3) choose the destination robot (we
can address a maximum of 16 robots). Finally, the last field (bits 2-0) selects the
port inside the destination robot (see section 3.3).

Data message format The DATA package contains the following fields, where
each field correspond to a byte, except by the sixth one, whose size is specified
by the fifth:

8

0-Type–Message identifier (0).
1-Hop Source–Source address of next hop.
2-Hop Destination–Destination address of next hop.
3-Destination Address–Destination address of data packet.
4-Originator Address–Source address of data packet.
5-Size–Data size in Bytes.
6-...-Data–Data.

Route request packet (RREQ) The RREQ package (Route Request) de-
scribed in previous section is made up by the following 9 bytes:
0-Type–Message identifier.
1-Hop Source–Source address of next hop.
2-Hop Destination–Destination address of next hop.
3-Hop Count–The number of hops from source address to the robot handling
the request.
4-RREQ ID–A number uniquely identifying the particular RREQ when taken
in conjunction with the Originator Address.
5-Destination Address–The address of the destination robot for which a route is
desired.
6-Destination Sequence Number–The last sequence number received by the source
robot for any route toward the destination.
7-Originator Address–The address of the robot that originated the route re-
quest.
8-Originator Sequence Number–The current sequence number to be used for
route entries pointing to (and generated by) the source of the route request.

Route reply package (RREP) The RREP package is composed by the fol-
lowing eight bytes:
0-Type–Message identifier.
1-Hop Source–Source address of next hop.
2-Hop Destination–Destination address of next hop.
3-Hop Count–The number of hops from destination address to the originator
address.
4-Destination Address–The address of the destination for which a route is sup-
plied.
5-Destination Sequence Number–The destination sequence number associated
with the route.
6-Originator Address–The address of the source robot that issued the RREQ for
which the route is supplied.
7-Lifetime–The time for which robots receiving the RREP consider the route to
be valid. This field will be reduced in each hop, and if its value is 0, the message
will be discarded.

9

Route error package (RERR) Finally the RERR package needs the following
six bytes:
0-Type–Message identifier (3).
1-Hop Source–Source address of next hop.
2-Hop Destination–Destination address of next hop.
3-Unreachable Destination Address–The address of the robot that has become
unreachable because of a link break.
4-Unreachable Destination Sequence Number–The last known sequence number
associated to the unreachable robot.
5-Destination Address–The address of the destination robot towards the RERR
goes.

3.3 Transport layer

The transport layer provides end-to-end communication by means of the abstrac-
tion of ports. It provides the service of multiplexing the radio channel among
different applications running in the robot.

Ports makes easier to program applications that are composed by different
threads of control. For example, a thread can run a reactive controller which
avoids obstacles by using infrared sensors, while another thread is running the
code that guides the robot towards a ball using the camera. Imagine that another
robot needs to send data to one of those threads on the first robot. Without ports
it would be more difficult to do this task because we could not select between
applications.

Ports have been incorporated in the addressing scheme as shown in 1. Three
bits have been reserved to identify the port, that is, eight different applications
can be addressed in a robot.

3.4 Application layer

Currently the PERA library does not provide any communications protocol on
the application layer. In future releases we intend to provide application protocols
adapted to the communications needs of the applications we run on our robots.
In particular, we want to implement a subscrition protocol that let application
get periodical information, for example sensor data.

4 Implementation and Evaluation

One of the more important features required in the PERA library implemen-
tation was transparency. This let us take some implementation decisions: every
applications execute in a different thread. Send and receive buffers are used in
the transport layer to communicate with the net level. One pair of buffers is
reserved for each application thread.

10

Fig. 3. Implementation scheme using various levels

The net layer which is executing PERA has been implemented using its own
thread. This thread checks each send buffer and, if there is some data pending
stored on one of them by the transport layer of a sending thread, it sends it.
When, the net thread receives data, it stores it in the correct destination buffer
according to the destination port. Other functions of the net layer are to route
packets to a neighbour and to answer RREP’s received. Periodically, it must also
check if it must broadcast a Hello packet.

Concerning the evaluation, we have tested the library by simulating various
scenarios in order to check the performance of PERA. The most significant re-
sults are described in this section. Anyway, for further information, the source
code and detailed explanation of PERA can be obtained in http://gsyc.escet.urjc.es/robotica/pfc/pfc-
pera.html.

In the tests, first we wanted to know the overhead introduced in the ini-
tialization of the radio modules. Experiments have shown that there is a 15%
increase in time, and this increase is lineal to the number of robots. Initialization
time depends on how many robots are powered on simultaneously (this is due
to the underlying RoBIOS link protocols). This is due to the new threads and
structures that have to be created as described in the previous paragraph, and
shown in figure3.

Then we want to know the performance in the discovery of new routes. The
results once again shown that the time need grows lineally with the number of
robots in the route. Note that for any new robot in the route two new messages
have to be sent if that robot happens to be in the route, note also that the
inherent broadcast nature of robot radio communications, makes it independent
from the number of robots that can be “seen” from the new one added.

The performance of the protocol when sending data through a previously
discoverd route has also been tested. In figure 4 the results of a simple experiment
are shown. First, the time that an increasing number of packages that two robots,
that can connect directly, sends to each other takes to be sent is shown (red lower
line). Then (green upper line), the same number of packages sent through another

11

robot, in a three herd scenery, are shown. As it had been previously stated, the
time grows lineally.

Fig. 4. Time comparison when sending data through a known rotue

Last, the recovery when routes are lost (a relaying robot moves) has also been
tested. Figure 5 shows the time that a sending robot needs to discover that the
route is not working, till a new route is discovered. The setup of the experiment
consisted in simple 3 robots raw scenary, where the middle one was duplicated,
that is, in fact there were 2 robots in the middle. The two robots placed in the
middle were disconected alternatively. The Time To Life (TTL) of the routes
has been set to 5 seconds, and the time or retransmission to 1’ sec in order to
all the lost packages to generate a new route discovery. Looking at this figure,
it can be stated that the reconfiguration time is almost the same as the route
discovery time.

5 Conclusions

The aim of this paper was to provide an ad-hoc communications API for robots,
that let them communicate in environments where infraestructure is not avail-
able, or it does not want to be used. We have proposed a modified communi-
cation protocol, an addressing schema, and an implementation for the Eyebot
robot. The implementation offers an alternative to the original RoBios API for
communications.

The major improvements of this new API are the possibility of sending data
beyond the radio scope of the robot, and to a particular program in a mul-
tiprocessing robot. That is, the routing algorithm guarantees, that there is a
route through other Eyebots, data could be sent; and the addressing schema
that allows communication among applications, not among robots.

The main problem of this library is that a packet can be lost with high
probability because PERA does not guarantee reliable communication on any

12

Fig. 5. Route re-discovery times

of its layers. In this way, we could say that we have provided the equivalent
to the UDP protocol, not to TCP. A place where message recovery could be
provided is the transport layer, thus providing reliable transmission end-to-end
by retransmission if it would be required. Another alternative, is to implement
recovery protocols at the link layer.

The ACKs that are already used at the network layer in order to detect lost
routes could be used also to detect possible transmission errors. This feature
would discard false positives in the detection of lost routes, and would accelerate
the recovery of lost messages in case this is the reason for the absence of ACK
reception.

Finally, we are currently implementing a multicast extension, that is one
sender and a group of receivers. The addressing scheme of PERA already incor-
porates support for this kind of communication, but not the current realese.

References

1. C. Agero, V. Matelln, P. de las Heras, “PERA: Protocolo de Encaminamiento sobre
redes Ad-Hoc”, http://gsyc.escet.urjc.es/pera, 2002.

2. T. Braunl, “Eyebot Documentation”, http://www.ee.uwa.edu.au/braunl/eyebot,
2002.

3. M. S. Corson, A. Ephremides, “A Distributed Routing Algorithm for Mobile Wire-
less Networks”, ACM/Baltzer Wireless Networks J., 1995.

4. S. R. Das, C. E. Perkins, E. M. Royer, M. K. Marina, ”Performance Comparison
of Two On-demand Routing Protocols for Ad hoc Networks.” em IEEE Personal
Communications Magazine special issue on Ad hoc Networking, 2001.

13

5. R. Dube, “Signal Stability based Adaptive Routing (SSA) for Ad-Hoc Mobile Net-
works”, IEEE Pers. Commun., 1997.

6. D. B. Johnson, D. A. Maltz, “Dynamic Source Routing in Ad-Hoc Wireless Net-
works”, Mobile Computing, 1996.

7. S. Murthy, J.J. Garca-Luna-Aceves, “An Efficient Routing Protocol for Wireless
Networks”, ACM Mobile Networks and App. J., Special Issue on Routing in Mobile
Communication Networks, 1996.

8. C. E. Perkins, “Ad Hoc Networking”, Addison-Wesley, 2001.
9. C. E. Perkins, E. M. Belding-Royer, S. R. Das, “Mobile Ad Hoc Networking Work-

ing Group - Internet Draft”, http://www.ietf.org/internet-drafts/draft-ietf-manet-
aodv-11.txt, 2002.

10. C. E. Perkins, P. Bhagwat, “Highly Dynamic Destination-Sequenced Distance-
Vector Routign (DSDV) for Mobile Computers”, Comp. Commun, 1994.

11. RoboCup-Rescue Official Web Page, http://www.r.cs.kobe-u.ac.jp/robocup-rescue/
12. E. M. Royer, C. Toh, “A Review of Current Routing Protocols for Ad-Hoc Movile

Wireless Networks”, IEEE Personal Communications, 1999.
13. A. S. Tanenbaum, “Redes de computadoras”, Prentice Hall, 1997.
14. C. Toh, “A Novel Distributed Routing Protocol To Support Ad-Hoc Mobile Com-

puting”, IEEE 15th Annual Int’l. Phoenix Conf. Comp. and Commun., 1996.

