Octopus

// % \\\
[\
3
A
~

A
G y

)
>
L &
=
e

MR
>

User’s Manual

Second Edition
May 2008

Copyright © 2008 Laboratorio de Sistemas
Copyright © 2007 Vitanuova Holdings Ltd.

GSyC — Universidad Rey Juan Carlos

Madrid (Spain)
http://Isub.org/Is/octopus.html

INTRO(1) Octopus — 2nd edition INTRO(1)

NAME
intro - introduction to the Octopus

DESCRIPTION
The octopus is a system built to achieve a distributed computing system by using a centralized
one. The idea is that all the applications run at a single, central, computer. Users connect devices
found in the Internet (probably attached to full-fledged computers) to their (remote) central com-
puter, so that they do not have to carry hardware around, yet they see a single, homogeneous, reli-
able system. Even while using a distributed, heterogeneous, and dynamic environment.

The octopus inherits most ideas from Plan B and therefore from Plan 9 and Inferno. Thus, it would
be appropriate to read the intro(1) manual page from Inferno before proceeding with this one. See
also http://1lsub.org/ls/octopus.html.

The octopus mounts file systems across network links with bad latency, that is, links exhibiting
RTT times from 50 to 120 milliseconds. Such links are used to connect devices (found in the Inter-
net) to the central PC.

A machine providing one or more devices to the central computer is known as a terminal. The cen-
tral computer is known as the personal computer or the PC, and provides a central name space to
terminals. Both the PC and terminals run file servers to provide services to be mounted on the
other end of the link. Terminals and PCs cooperate using the Op file protocol, described in section
O of this manual. Only in particular cases do they use Styx to talk to each other.

Usually, two (network) connections are set up between the PC and a terminal in the octopus. In one
of them, the PC is a client (for terminal devices) and the terminal is a server. In the other, the roles
are exchanged. But note that for the octopus implementation in Inferno, Styx is used within the
central computer, and also within any terminal using Inferno. However, servers in the terminal
speaking to clients in the central computer do so using Op, and the same happens for exporting
the central computer name space to terminal devices.

The computing environment as seen by the user is that of the central computer. In the current
implementation, it would be an Inferno computing environment or perhaps a Plan 9 computing
environment. It depends on which machine is designated as the central computer and which soft-
ware does it run.

The central computer is implemented by an Inferno system running the o/pcrc start-up script,
described in pcrc(1). This script starts listeners providing network services expected at the PC, and
makes the PC able to import terminal devices and to export a central name space. The central com-
puter adapts to changes in device availability. This way, the central name space changes depend-
ing on the set of devices available and the name space as configured by the user. See mux(4) and
netget(1) for a description of what this means.

A terminal in the present implementation is an Inferno system running the o/termrc start-up
script. But note that any machine following the conventions for terminals would be a terminal. In
particular, a machine exporting through Op one or more devices would be a perfect terminal. User
1/0 happens at terminals, the central computer runs applications instead.

In the implementation for Inferno, /dis/o contains portable (Dis) binaries for the octopus. This
manual includes just those manual pages that must be added to an Inferno user’s manual to con-
vert it to an Octopus user’s manual. Section 1 describes commands implemented for the octopus,
section 2 describes Limbo modules for the octopus, section 4 describes file servers, and section O
describes the file protocol used to glue the system together. But note that usually, all file servers in
the octopus are Styx (i.e., Inferno) file servers. Only oxport(4) and ofs(4) need to speak Op, when
Inferno is being used on both terminals and the PC.

On each manual page, the Platform section describes which platform the command or module is
meant for. This is needed because some commands may be implemented only for certain hosts or
terminals. When this section is missing, the command or module is considered portable enough to
run at any supported platform.

SEE ALSO
intro(0), http://1lsub.org/octopus, and various papers mentioned there.

CLOCK(1) Octopus — 2nd edition

NAME

clock - analog omero clock
SYNOPSIS

o/clock
DESCRIPTION

Clock is an analog clock for omero(4).
SOURCE

/usr/octopus/port/clock.b
SEE ALSO

olive(1), omero(4).

CLOCK(1)

COPYSERVER(1) Octopus — 2nd edition COPYSERVER(1)

NAME

copyserver - file copying between a source and a destination

SYNOPSIS

copyserver [-d] mntdir

DESCRIPTION

copyserver starts a styxservers(2) server and mounts it at mntdir (replacing the old binding, if
any). Once done, the server is ready to accept copy requests. Unmounting mntdir will cleanly shut-
down the server.

Copy requests are written into the (virtual) control file of the server, named ct/, using the following
format:

copy
[srcmntopt] srcfname srcoff

[dstmntopt] dstfname dstoff
nofbytes iounit delay ctlfile

If the source and destination files are successfully opened, the copy commences. The write opera-
tion on the server control file blocks until the copy terminates, or it is killed (discussed in the
sequel), or an r/w error occurs. Also, a copy is aborted if the process that writes the request to the
server control file is killed (this is detected by the server via the receipt of a flush(5) message for
the write operation).

Here is a brief explanation of the copy request arguments:

srcfname and dstfname specify the source and destination file name, relative to the root of the
source and destination file system, respectively. srcfname must point to an existing file. If
dstfname points to an existing file, this will be truncated and overwritten, else a new file will be
created.

srcoff and dstoff specify the offset from which to start reading the source and writing the destina-
tion file, respectively. These values must be equal or greater than zero. The file position is
adjusted based on the rules for sys—seek(2) (using Sys—>SEEKSTART).

nofbytes specifies the number of bytes to copy from the source to the destination file. The copy
operation will terminate in case the end of the source file is reached earlier. If nofbytes is zero, the
copy will not terminate unless the end of the source file is reached. If the source points to the
reading end of an endless stream, the copy will run "for ever", until it is aborted or killed.

iounit specifies the size of the data buffer used to read bytes from the source file and write them
to the destination file.

delay specifies the number of milliseconds to wait between two successive r/w operations. Com-
bined with a small jiounit value (e.g. 1 byte), this makes it possible to test the copy server in an
interactive fashion and using small files. If delay is zero, the copy will be performed at full speed.

For both the source and destination, an option, srcmntopt and dstmntopt , respectively, can be
used to specify whether the corresponding file systems need to be mounted, and how this should
be achieved. The mount option has the following format:

(-s[A] | -o[A]) addr

Option -s is specifies a conventional mount via styx(2) , and option -o specifies a mount via ofs(4)
to a remote oxport(4) server. In both cases, the -A option is used to turn authentication off. addr
specifies the address to be dialed. If no mount option is used, the server interprets the filename
relative to its local name space (no mount is done).

For each ongoing copy, the server "creates" a (virtual) control file, using the ct/fname that was sup-
plied in the request. The server "removes" the control file when the copy terminates (or is aborted
or is killed).

Reading the copy control file returns the number of bytes copied so far as a string value. Writing
the string value "kill" in the file kills the copy (the server will notify the blocked process that issued
the copy request via an error(5) message).

COPYSERVER(1) Octopus — 2nd edition COPYSERVER(1)

EXAMPLE

To mount a copy server on /cpsrv with debugging output enabled:

./copyserver -d /cpsrv
To (background) copy file /d1/f1 exported by an oxport file server which does not require
authentication and listens on tcp!127.0.0.1!4242 , to file /d2/£2 in the file system of the

copy server, using a r/w buffer of 512 bytes, with an artificial delay of 50 ms between each r/w
operation, and cp1l being the name of the copy control file:

echo copy -0A tcp!127.0.0.1'4242 /d1/f1 O
/d2/f2 0
0 512 50 cpl > /cpsrv/ctl &

Or to (background) copy file /d1/f1 exported by a styx file server which does not require authen-
tication and listens on tcp!127.0.0.114243 , to file /d2/£2 in the file system exported by
the same oxport server as above, using the same request settings:

echo copy —sA tcp!127.0.0.1!4243 /d1/f1 O
—0A tcp!127.0.0.1'4242 /d2/f2 0O
0 512 50 cpl > /cpsrv/ctl &

To check the progress of the copy:
cat /cpsrv/cpl

To abort the copy, one may Kkill the process that issued the request (and remains blocked waiting
for the write operation to return). Alternatively, one may use the corresponding control file to kill
the copy (this will also unblock the background process):

echo kill > /cpsrv/cpl
Finally, to unmount the copy server:
unmount /cpsrv

Note that the copy server will shutdown when all processes have unmounted it from their name
space.

SOURCE

/usr/octopus/varia/copyserver.b

SEE ALSO

BUGS

styx(2) , mount(2) , ofs(4) , and oxport(4)

There is no access control for the copy control files "created" by the server. Any process can read
and write every copy control file (e.g. kill any ongoing copy, if it so desires). Also, the ownership
and access rights of the destination files created as a side effect of a copy are not properly set.

There is a subtle race condition when reading the copy control file, which may result in occasion-
ally delivering a wrong value for the number of bytes that have been copied so far. The probability
for this is (very) small.

For simplicity, dialing and mounting (and unmounting) file systems is currently done via shell com-
mands (instead of a direct invocation of the corresponding primitives). This means that changes in
the command syntax will "brake" the copyserver code. Also, the failure of a shell command is
inferred indirectly, by checking whether any output was written on standard error.

Killing/aborting a copy is asynchronous, i.e. it may be performed with a (small) delay, after having
sent the corresponding reply message to the entity that triggered this action.

COPYSERVER(1) Octopus — 2nd edition COPYSERVER(1)

IDLE(1) Octopus — 2nd edition IDLE(T1)

NAME
idle - detect when the user is not idle

SYNOPSIS
idle

DESCRIPTION
Idle updates /mnt/who/user/last with $sysname whenever it thinks the user started to use
the machine by looking at mouse/keyboard activity and to the status of the screen saver.

SOURCE
/usr/octopus/Mac0OSX/idle.b
/usr/octopus/Plan9/idle.b

BUGS
The Plan 9 version only works for Plan B kernels.

LMOUNT(1) Octopus — 2nd edition LMOUNT(1)

NAME

Imount - octopus link testing mount tool
SYNOPSIS

o/Imount[-Lms] ...
DESCRIPTION

This program is similar to mount(1) and accepts all its options, but includes instrumentation to
test services over poor latency links. The flag —L delayes each request sent to the server for ms
milliseconds. Requests are delayed concurrently so that throughput is not affected.

Creating a file with name ! | LAT=N is a more convenient way of adjusting the delay to N millisec-
onds. Once the service is mounted, and its file tree populated, a
touch /mnt/!!LAT=n
would put delays in effect.
SOURCE
/usr/octopus/port/lmount.b
SEE ALSO
mount(1),

NETGET(1) Octopus — 2nd edition NETGET(1)

NAME

netget - octopus network resource register tool

SYNOPSIS

netget [-d][- regdir] name spec . . .

DESCRIPTION

Netget registers the resource named name with attributes as specified in spec into the registry.
The registry is found by trying /mnt/registry, or the directory regdir given to the —r flag. If
the registry is not found and —r was not used, the module dials tcp!pc!registry to mount
the registry listening there.

The program updates the registry entry once in a while, updating atrributes that reflect the loca-
tion and the radius (round trip time in milliseconds) to the PC. More than one resource may be
given in the command line (two arguments each, as said), to create multiple entries in the registry.

Entries registered by netget are subject to leasing because the program adds a 1ease attribute to
them, and refresh it along with location and radius to the PC to renew the lease. The lease interval
is set to twice the refresh rate (one minute in the current implementation).

A resource is specified by a pair of name and spec (both strings). Where name is the name for a
network gadget, for example, audio. Netget defines the attribute name wich such name. The
name used in the registry for the resource would be o! followed by name followed by the system
name, like in o!audio! $sysname. The convention is that the name includes the system name
for the machine providing the resource after the resource name, as shown.

The spec argument is a set of attribute/value pairs, in a single argument string, separated by white
space. At least one attribute named path is expected in the octopus, whose value must be the
path for the resource in the terminal providing the resource (see the example below). Netreg adds
/terms/$sysname before the path attribute suppied, to make it portable across terminals and
to ensure that all such attributes are homogeneous.

The program adds attributes sys (with the sysname name), user (with the user name for the user
running the program), loc (with the location as for the machine as said in
/pc/what/$sysname/where), rad (with the radius for the service, ie., milliseconds of RTT
to the central PC), and arch (with a string reflecting the host architecture and system name).

EXAMPLE

Register the directory /what from the terminal in the central PC:
o/netget what ’'path /what’

SOURCE

/usr/octopus/port/lib/netget.b

OLIVE(1) Octopus — 2nd edition OLIVE(1)

NAME
omero, olive - distributed window system

SYNOPSIS
o/mero [—abcdi] [—m mnt]
o/live [—-dDEFKLMPTW] [odir] sdir

DESCRIPTION
This manual page is both an introduction and documentation for the user interface to the window
system. After reading it, it is suggested to read ox(1) for a description of the editor and shell inter-
face.
The Octopus the window system, o/mero, does not draw and does not interact with the user.
O/mero implements a file tree that represents a tree of graphical panels. Flags —abc are similar
to the bind(2) flags of the same name. Option —m can be used to select mnt as the mount point
instead of the default /mnt/ui. Under flag —i the standard input is used as a connection to the
client.
All user interfaces are created as subtrees of the file tree maintained by o/mero. The graphical rep-
resentation of panels in the screen corresponds to the file tree serviced by o/mero to its clients.
For example, a screen that contains two rows has two corresponding files in its root directory. If
the user moves one row within the other using the mouse, the same would happen to their respec-
tive files; and vice-versa.
The root of the o/mero file tree, mounted at /mnt/ui by default, contains a directory named
appl, a file named olive, and one additional directory per screen (or session). A screen is a
top-level panel used to keep other panels within. It is used to represent what is to be shown at a
terminal.
You can refer to omero(4) for a description of the window system and its file interface, and to
panels(2) for a description of the API to the window system.
O/live is a viewer that permits the user to interact with o/mero. It uses a graphical terminal to dis-
play panels according to the panel tree supplied by o/mero and accepts mouse and keyboard input
to operate on the panels. O/live is the only program that knows how to draw, how to interact with
the mouse and the keyboard, and how to implement particular panel (or widget) type. Different
user terminals mount the same o/mero file tree and run o/live to view (parts of) it.
The argument odir to o/live is the path to the root of the user interface tree. The argument sdir is
the name of the screen (directory) to be shown by o/live. It is feasible to share the same screen
among multiple o/lives. In this case, editions are synchronized among viewers when the mouse
moves. Other flags shown in the synopsis activate various debug diagnostics and are not dis-
cussed here.

Panels

Application interfaces are created by creating files under /mnt/ui/appl. A new session may be
created by creating a directory at /mnt/ui instead.

Panels are shown at one or more screens by replicating their files from /mnt/ui/appl at one or
more screen subtrees. Panel replicas may be moved around as desired. Some panels exist only
within a screen subtree (are not replicated) for layout purposes, but most are replicas.

There are three kind of panels: rows, columns, and atoms. Rows and columns group inner panels
and handle their layout. A row arranges for inner panels to be disposed in a row. A column does
what can be expected. Atoms include text, images, gauges, etc. Omero(4) describes the complete
list.

Any panel may have a tag (a square near its top-left corner). By default, rows and columns have
tags, and atoms do not. When a panel has hidden panels within it, its tag is shown as a vertical
rectangle instead of a square box. The vertical space below the tag is called the margin.

A panel may be in a dirty state, when the application using it considers that it has unsaved state.
In this case, the tag is shown in a light green color. This happens also to any row or column that
contains a dirty panel.

OLIVE(1) Octopus — 2nd edition OLIVE(1)

Selection
The user selection and clipboard are maintained using files (that can be shared among machines).
The file /mnt/snarf/sel contains the path to the panel whose selection changed last. The file
/mnt/snarf/snarf is kept synchronized to the clipboard by running snarf(1).

The selection determines the panel where to apply editing commands and the directory where to
execute external commands. A single click on a file panel would change the selection to that panel.
Note that unlike in Acme, a command does not apply to the file shown in the panel where the com-
mand has been typed, but to the last panel selected (Labels, single lines and buttons do not
update the selection despite showing ticks and obeying selection commands).

Mouse and keyboard
The pointer location determines where the input from the keyboard is sent (But note again that
selection determines where commands are executed). Tags and margins (and not just panel con-
tents) accept input as well, both using the mouse and the keyboard.

O/live can be used with either a two button mouse, a three button mouse, or a mouse with one
button and some way to make a click with the second button. The right mouse button is always
named ‘‘button 3”’, the left one is ““button 1’’, and the middle one is “‘button 2’’. In Lsub Infernos,
keyboard function keys F1, F2, and F3 act as mouse buttons 1, 2, and 3.

Menus show different options in a circle around the point. To select one you must move the
pointer quickly in the direction of the option.

While the menu is shown, a click with the same button that raised the menu executes the last
option selected in that menu. A click with a different button closes the menu without doing any-
thing.

To aid touch pads, raising a menu and then drag with button 1 is undrestood as a drag with but-
ton 3.

Tag and margin commands
While on a tag or margin, the mouse can be used as follows:

Button 1 A drag on a tag moves the tagged panel. On rows and columns a small vertical or
horizontal drag makes the container behave like a column or a row. A single click
resizes the panel according to the following mouse actions: Another single click
(i.e., a double click) adjusts the size automatically and a drag changes the size of
the panel in proportion to the destination of the drag. recomputes the layout for
the tagged panel.

Button 2 A single click on a tag maximizes the panel, by hiding its siblings on the outer row
or column containing it.

Button 3 A click raises a menu with panel operations. A drag can be used to adjust the size of
the panel.

The menu shown at a tag (or margin) contains the following options:

Copy Makes the next drag copy the panel, instead of moving it.

More Hide all but the first inner panel (when all were shown) or show one more panel (when
not all were shown).

Hide Hides the panel.

Close Closes the panel (requires insisting if there are pending changes). To terminate o/live
(Without actually destroying the screen, kept within o/mero), use this command on the
top-left tag.

Top Zooms to make the panel full-screen. Zoom out to the original subtree when the panel is
already full-screen.

Full Maximizes the panel by hiding siblings.

While on a tag (or a margin) the following keys perform the indicated actions on the tagged panel:

Delete Send an interrupt request to the application (or do nothing for layout panels).

Esc Hide the panel.

Enter Zoom as needed to view the panel full-screen.

Backspace Delete the panel.

Insert Create a new colum.

Left (the ““<"" key). Zoom out one level and show the outer panel containing the entire

screen (and probably more).

OLIVE(1)

Ri
Up
Do

Ta

ght
wn

b

Octopus — 2nd edition OLIVE(1)

(the ‘“="’ key). Zoom in one level down to the tagged panel.

(the ‘1"’ key) Show all the inner panels, which might be hidden.

(the ““1”” key). Hide all but the first inner panel (when all were shown) or show one
more panel (when not all were shown).

recompute the layout for the panel on the screen.

Panel commands
While within a panel, the mouse can be used as follows:

Button 1 Can be used to change the selection and the insertion point. Double and triple

clicks select the word at the pointer. The later consider characters like *“/’’ to be
part of the word, the former does not. A double click on white space selects an
entire line. One at an open bracket (or quote, or ...) selects all the text up to the
closed bracket (or quote, or ...).

Button 2 Executes the word or selection at the pointer as a command. The command New

would create a new column.

Button 3 A single click with the button 3 raises a menu. A drag can be used to scroll up or

Chords

down. The entire panel represents the scroll bar. Scrolling speed depends on the
proximity of the initial drag point to the end of the panel.

Chords similar to those used by acme(1) are understood as well. They can be used
to cut and paste text. Refer to acme’s manual page for a reference.

The menu for a panel contains the following commands:

Op

C1l

Wr

Ex
Fi
Pa

en

ose

ite

ec
nd
ste

Opens the file whose name is the word or selection at point. (To create a new file use
the B command from the editing language).

Closes the panel. If it is dirty it may be necessary to insist by repeating the action. To
terminate o/live (Without actually destroying the screen, kept within o/mero), use this
command on the top-level panel.

Writes changes made to the panel. On text panel this means writing the edited text back
to the file server.

Executes the command whose name is the word or selection at point.

Searches the panel to find the text at point.

Inserts the contents of the clipboard at point. (To “‘cut
on a selection).

some text, use the backspace

While on a panel, the following keys have special meaning:

Delete

Es
En

C
ter

Send an interrupt request to the application.
Select the text typed from the last mouse click.
Execute the command typed from the last mouse click.

Backspace When the selection is null, delete last character. Otherwise, remove the selected

AU

Insert

Le
Ri
Up
Do

EXAMPLE

ft
ght

wn

text and copy its contents to the clipboard(i.e., “‘cut”).
(Control and U). Delete last word.

Paste the text in the clipboard.

(the ‘““<"" key). Undo.

(the ‘““="’ key). Redo.

(the ‘1"’ key) Scroll up.

(the ‘1"’ key). Scroll down.

Start the window system and a single viewer on it:
create mount points if they do not exist
mkdir -p /mnt/ui /mnt/ports

#
%
#
%
#
%
#
%
#
%
#
%

start the event delivery service
o/ports

start the window system

o/mero

create a screen/session
mkdir /mnt/ui/sO
start the shell and browser

o/X

open a viewer for sO
o/live sO

OLIVE(1) Octopus — 2nd edition OLIVE(1)

After exiting Olive you may run it again to see your session as it was.
SOURCE

/usr/octopus/port/live

/usr/octopus/port/mero

SEE ALSO
ox(1), ports(4), panels(2), omero(4), and snarf(1).

BUGS
Under certain circumstances Olive may report a concurrent edition when that is not the case. The
only way out from this is to use the menu at the tag to close the panel and then reopen it again.
This will be fixed soon.

OX(1)

NAME

Octopus — 2nd edition OX(1)

ox - omero editor and shell

SYNOPSIS

o/x[-9dnp]l[-o odir1[-1 Idir]

DESCRIPTION

O/x is a program that implements a shell to browse the file system, edit, and execute commands
while using o/mero. Flag —d activates debug diagnostics and option —o can be used to select
odir instead of /mnt/ui as the root directory for the window system. Flag —1 can be used to
ask o/x to load an already existing interface found at directory Idir instead of creating its own. The
interface should come from a previous instance of o/x (e.g., by using tar(1) to save and restore it).
See the example below.

In many cases, o/x runs under flag —9 causing all file names to be interpreted in the host underly-
ing Inferno (expected at /mnt/fs) and all commands to be executed by the host system. As an
optimization, flag —n may be used when the Inferno used does not call rfork(2) using the
RFNAMEG flag for executing host commands. That is the case at Lsub.

Flag —p makes o/x persist, so it re-spawns a new instance of the program after it dies. This is
used to make sure that there is always a shell program running at the PC.

For the most part, o/x can be handled via the o/mero tag and panel commands described in
olive(1). Besides, o/x includes its own command language consisting of builtin commands, Sam
commands, host commands, and inferno commands. Beware that unlike other editors in Plan 9
and Inferno, o/x applies the commands to the user selection (determined by the last text panel
where the used mouse button 1, as explained in olive(1)).

Host commands are commands executed by the host system underlying Inferno (eg., Plan 9).
Inferno commands are commands executed by the Inferno system where o/x runs. Edition com-
mands are similar to those of the Sam editor, and builtin commands are any of the following ones:

Ctl ctl Executes the control request ct/ on the text panel of the last user selection. See
omero(4) for the full list.

Cmds Shows the list of commands that have not yet finished.

Dup screen (understood at the directory panel shown by o/x) creates a new directory panel to

browse the file system. The optional screen names the screen where the new
panel is to be shown. Panels for files (and directories without the screen argu-
ment) are shown in the screen of the directory panel used to open them. If the
screen does not exist in o/mero it is created before showing the new directory

panel on it.

Edit Creates an interaction panel where commands executed are always considered
Sam commands.

End Terminates the program.

Keep prevents o/x for automatically closing the panel when too many panels are open.

Rc The same, for host commands.

Scroll Toggles the default behaviour regarding scrolling for new output panels.

Sh The same, for Inferno commands.

A command is considered a Sam command unless preceded by a %, a !, or a ; sign:

cmd ... Executes the Sam command cmd.

%cmd... Executes the Inferno command cmd.

semd ... Executes the host command cmd.

lemd ... Executes cmd at the host when o/x is under flag —9 and at Inferno otherwise. This

is the most used idiom, and executes the commands in the system where the files
being browsed reside.

See sam(1) for a description of the language. The commands b, k, g, u, and ! are not imple-
mented by o/x, and two new commands are available:

P/regexp/ cmd For each panel whose name matches regexp execute cmd. Here, only f, D,
and e are valid commands. The default is £. The former prints the name of

OX(1) Octopus — 2nd edition OX(1)

the panel, D closes the panel, and e replicates the panel to the screen used to
execute the command (or to the path given as an argument as shown in
examples).

Q/ regexp/ cmd Similar to P, but executes cmd for panels not matching regexp.
Commands executed as if they were executed using a ! escape.

EXAMPLES
Save the session for O/x to use it later:
% cd /mnt/ui/appl
% tar c col:ox.* >/tmp/oxui.tar

Start o/x to continue a saved session:
% cd /mnt/ui/appl
% tar X </tmp/oxui.tar
% ox —1 /mnt/ui/appl/col:ox.*

To get a new o/x directory panel in the a new screen, named s1 you may execute:
Dup s1
in any directory panel shown by o/x.
To copy all the panels from the stats row in the main screen to the stats section of the
other screen, execute this command in o/x:
P/main. *stats/ e /other/row:stats

SOURCE

/usr/octopus/port/x
SEE ALSO

olive(1), sam(1), and omero(4).

BUGS
The editor language por panels still needs more work.

PCRC(1) Octopus — 2nd edition PCRC(1)

NAME
pcrc, termrc - octopus start-up scripts

SYNOPSIS
pcrc
termrc

DESCRIPTION
Pcrc starts the central computer services for the octopus. It converts a local inferno in the PC for
the octopus. Termrc plugs the local inferno in as a terminal for the PC. It converts the local
inferno into an octopus terminal. Both scripts are meant to be customized for particular users,
although they might just fit as provided.

The script pcrc starts DNS, the connection service, and authentication services. It defines the $PC
environment variable, and spawns listeners for services expected at the PC in the octopus. In par-
ticular, it provides a registry and also import and export ports via Op to import terminal devices
and to export the central name space to terminals. It is responsible for starting the window system
and ox(1) among other things. Finally, it calls termrc to provide terminal services at the PC.

The script termrc asks for the location of the terminal and for the name of the central PC. It
defines environment variables $location and $pc reflecting that. Then, it updates context
information for the terminal (kept at /term/what) and dials the PC both to export local
devices to the PC and to import the central name space from the PC (using Op in both cases). It
starts olive(1) to let the user browse the PC and execute commands on it. It also starts a shell with
a mounted /pc , which now contains the shared name space from the central PC.

EXAMPLE

This is an example session:

% o/termrc

location? [home]

PC? [alboran.lsub.org]

welcome to your octopus terminal at home
PC is alboran.lsub.org 212.128.4.124
importing /pc

terminal with radius 0562

exporting /what /who /fs

%

SOURCE
/usr/octopus/port/pcrc and /usr/octopus/port/termrc.

PLUMBING(1) Octopus — 2nd edition PLUMBING(1)

NAME

plumbing - listen to plumb port and execute commands to attend messages
SYNOPSIS

plumbing [-v] port cmd [arg...]
DESCRIPTION

Plumbing spawns a child process to listen for messages in the plumber(8) port given as an argu-
ment. For each message received, it executes cmd as a shell command. The command has the
environment variable $msg defined to contain the plumbed message data.

Flag —v makes the program verbose, to report messages received.

Note that in the octopus using ports(4) is preferred to plumber(8) for reporting events, because it
does not require plumber ports to be created in advance.

EXAMPLE

Execute o/newterm each time a message is sent to the netget plumber port.
o/plumbing netget { /dis/o/newterm $msg & }

SOURCE
/usr/octopus/port/plumbing.b

SEE ALSO
plumber(8).

QUERY(1) Octopus — 2nd edition QUERY(1)

NAME

query - octopus resource query tool

SYNOPSIS

query [-u mnt] [-m mnt] name val . . .

DESCRIPTION

Query asks the registry for octopus resources matching attributes specified with name and val
arguments (attribute name and value). By default, query prints a list of paths for matching
resources in the registry. The paths should be ready to be used within a octopus name space, see
namespace(4).

The special value $user for the attribute loc refers to the user location as reported by
/mnt/who/$user/where. In the same way, $term refers to the terminal location for the 1oc
attribute and to the terminal architecture for the arch attribute.

Flag —m asks query to bind(1) any of the matching resources at mnt . Flag —u works in the same
way, but creates a union with all the resources found, instead of binding just one.

Note that using —m or —u flags would make the current name space dependent on a particular
octopus resource. This means that when the terminal that provides it goes away, the mount point
will break and fail for further operations. That is, this is a static, regular, Inferno mount, and does
not adapt to changes. Use mux(4) to adapt.

SOURCE

/usr/octopus/port/lib/query.b

SEE ALSO

pcns(1), mux(4), and pcrc(1).

WATCHER(1) Octopus — 2nd edition WATCHER(1)

NAME

watcher - octopus watcher for network resource arrival and departure

SYNOPSIS

watcher [-dv][—r regdir]

DESCRIPTION

Watcher watches out the registry to detect and notify of arrivals and departures of terminals in the
octopus. It opens /mnt/registry/event to detect changes in the registry (or uses the reg-
istry mounted at regdir when —1 is given) and scans the registry each time it changes.

For each new entry in the registry with value ofs for the name attribute watcher plumbs a mes-
sage notifying of the arrival of the terminal whose name is reported by the sys attribute as found
in the entry. When such entry is gone (either due to lack of refresh or due to removal from the reg-
istry) watcher plumbs a message notifying the departure of the terminal. Messages are plumbed
both via plumber(8) and via ports(4).

Upon departure of a terminal, as reflected by a gone registry entry for of's, watcher kills the entire
process group of the process whose PID was reported in the pid attribute of the ofs entry. This
is done to force all resources imported from a (no longer working) gone terminal to be discarded.
Also, watcher tries to unmount the terminal from /devs (just in case).

Flag —v makes the program a little verbose, to report arrivals and departures. Flag —d makes the
program quite verbose, for debugging.

SOURCE

/usr/octopus/port/watcher.b

SEE ALSO

netget(1), mux(4).

BLKS(2) Octopus — 2nd edition BLKS(2)

NAME
blks - data blocks

SYNOPSIS
include "blks.m";
blks := load Blks Blks—>PATH;

Blk: adt {
data: array of byte;
rp: int;
wp: 1int;
read: fn(b: self ref Blk, fd: ref Sys—>FD, max: int): int;
blen: fn(b: self ref Blk): int;
grow: fn(b: self ref Blk, n: int);

put: fn(b: self ref Blk, data: array of byte);
get: fn(b: self ref Blk, cnt: int): array of byte;

dump: fn(b: self ref Blk);
};
init: fn();
utflen: fn(s: string): int;

pstring: fn(a: array of byte, o: int, s: string): int;
gstring: fn(a: array of byte, o: int): (string, int);
pl6: fn(a: array of byte, o: int, v: int): int;
glé: fn(f: array of byte, i: int): int;
p32: fn(a: array of byte, o: int, v: int): int;
g32: fn(f: array of byte, i: int): int;
p64: fn(a: array of byte, o: int, v: big): int;
g64: fn(f: array of byte, i: int): big;
dtxt: fn(s: string): string;
DESCRIPTION
Blks provides support for data buffering. The Blk data type a block of data. It is organized as a
single array of bytes along with a read pointer Bl1ks.rp, and a write pointer Blks.wp. Available
data is kept between rp and wp. There may be room to add more data starting at wp.

Init should be called before using the module.
To create a new block, set all fields to null values.
Blk.blen returns the number of bytes available for reading in the array.

Blk.grow ensures that there are at least n bytes available for new data. The block may grow more
than requested and data may be moved to remove any leading hole in the buffer.

Blk.put puts data in the block. Blk.get returns cnt bytes from the block. The user is responsible to
check out that there are enough bytes available before trying to get them.

Blk.read can be used as a convenience to read data from a file descriptor into a block. At most
max bytes are read.

Remaining functions are helpers used to pack and unpack basic data types in a portable format.
Utflen is a convenience function that returns the number of bytes required to store a string in
UTF-8.

Pstring stores s at offset o in the array a and returns the offset past the string. Gstring retrieves a
string from a and returns both the string and the offset past the string.

Functions P16, P32, and P64 put 16, 32, and 64 bits in little endian order into an array of bytes.
They accept the offset o where to put the integer and return the offset past the integer. GI16, g32,
and g64 are the counterparts, and unpack 16, 32, and 64 bits integers from an array of bytes at a
given offset. They return the integer unpacked.

BLKS(2) Octopus — 2nd edition BLKS(2)

Dtxt returns a short version of s suitable for debug diagnostics.

SOURCE
/usr/octopus/port/lib/blks.b

ERROR(2) Octopus — 2nd edition ERROR(2)

NAME

Error, stderr, error, panic, kill, checkload - Error handling and diagnostics
SYNOPSIS

include "error.m";

err := load Error Error—>PATH;

init: fn(s: Sys);

kill: fn (pid: int, msg: string): int;

error: fn(e: string);
panic: fn(e: string);
checkload: fn[T](x: T, p: string): T;

stderr: ref Sys—>FD;

DESCRIPTION
Error provides functions used to deal with errors that are popular. Before any other thing, init must
be called to initialize the module.

Kill writes the msg given to the control file for the process identified by pid. It returns —1 upon
errors.

The functions error and panic are similar. They print the given diagnostic to standard error and
raise an expection. The second one will make the process break, for debugging.

Checkload is intented to load a module and return it, checking out that the module did indeed
load. In case of error it calls error with an appropriate message, using the second argument as the
name of the file that could not be loaded.

The global stderr is standard error, for use from other modules as well. Beware that using pct/(2)
may leave stderr closed, despite being not null.

SOURCE
/usr/octopus/port/lib/error.b

10(2) Octopus — 2nd edition 10(2)

NAME
readn, readfile, readdev, copy - file reading utilities
SYNOPSIS
include "io.m";
io := load Io Io—>PATH;
readn: fn(fd: ref Sys—->FD, buf: array of byte, n: int): int;

readfile: fn(fd: ref Sys—>FD): array of byte;
readdev fn(fname: string, dflt: string): string;
copy: fn(dfd, sfd: ref Sys—>FD): int;

DESCRIPTION
lo provides auxiliary functions used for file I/0, as a convenience.

Readn reads n bytes from the give fd (maybe less due to errors or EOF).

Readfile reads all the data availabe at fd and stops only when meeting EOF. This should not be
used for huge files.

Copy copies all data yet to be read from sfd to dfd and returns the number of bytes copied.

Readdev is used to read strings from device files. It read the contents and removes the trailing
newline (if any) and returns the string just read or dflt upon errors.

SOURCE
/usr/octopus/port/lib/io.b

MVOICE(2) Octopus — 2nd edition

NAME

mvoice - machine dependent voice support to speak text
SYNOPSIS

include "mvoice.m";

mvoice := load Mvoice Mvoice—>PATH;

init: fn(): string;

speak: fn(text: string): string;
DESCRIPTION

The function init initializes the module. Call it first.

MVOICE(2)

Speak uses the host speech support to speak text out loud. It returns a null string when successful,

or the error string otherwise.

This is a host-dependent module. Refer to the source section to see the supported platforms. The

file server voice(4) uses this facility and can be used as an example.

SOURCE

BUGS

/usr/octopus/MacOSX/mvoice.b
/usr/octopus/Plan9/mvoice.b

Punctuation symbols are not handled properly, because of the syntax used by the underlying com-

mand. Has been tested only with simple sentences.

NETGET(2) Octopus — 2nd edition NETGET(2)

NAME
Netget, announce, terminate - octopus network service registering module
SYNOPSIS
include "netget.m";
netget := load Netget Netget—>PATH;
init: fn(nil: ref Draw—>Context, args: list of string);
announce: fn(name: string, spec: string) : string;

ndb: fn() : string;
terminate: fn();
DESCRIPTION
Netget simplifies (and unifies) how network services are registered in the octopus. It can be used

to register any service provided by a file server, or by any other means. Refer to netget(1) for a
description of how to use this module as a command, and for the behaviour of the module.

Init should not be called. It is meant to provide a command interface for the module.

Announce announces the service with name name and attributes as said in spec. See netget(1) for
a description of these arguments and an example. It does so by registering with the registry
mounted at /mnt/registry or reached by dialing tcp!pc!registry (if /mnt/registry
did not contain a registry).

The function ndb returns a string with attribute/value pairs using the format of ndb(6), and can be
used to determine what has indeed been registered.

Terminate ceases registration for the service.

SOURCE
/usr/octopus/port/lib/netget.b

SEE ALSO
netget(1).

NETUTIL(2) Octopus — 2nd edition NETUTIL(2)

NAME

Netutil, netmkaddr, authfd - Network utility functions
SYNOPSIS

include "netutil.m";

util := load Netutil Netutil—->PATH;

Client, Server: con iota;

netmkaddr: fn(addr, net, svc: string): string;
authfd: fn(fd: ref Sys->FD, role: int, alg, kfile, addr: string):
(ref Sys—>FD, string);

DESCRIPTION
Netutil provides functions used in many programs providing or using network services.

Netmkaddr is similar to the Plan 9 function of the same name. It builds a network address given a
default network to use, net, and a default service name, svc .

Authfd performs Client or Server authentication (according to the role indicated) on the fd
given. The alg, kfile, and addr parameters may be left as nil if desired. They correspond to the
algorithm used, the keyfile used, and the address to authentify for. The function returns a file
descriptor (perhaps encrypted using alg), and a string with authentication information. Upon error,
the system error string is updated and a null descriptor returned.

SOURCE
/usr/octopus/port/lib/netutil.b

SEE ALSO
security—auth(2), dial(2).

Octopus — 2nd edition

OP(2)

Op, Rmsg, Tmsg, dir2text, istmsg, packdir, packdirsize, readmsg, qid2text, unpackdir - interface

OP(2)
NAME
to the Op file protocol
SYNOPSIS
include "op.m";
op := load Op Op—>PATH;
Message types
Tattach, # 1
Rattach,
Terror, # 3 illegal
Rerror,
Tflush, # 5
Rflush,
Tput, # 7
Rput,
Tget, # 9
Rget,
Tremove, # 11
Rremove,
Tmax: con l+iota;
NOFD: con int ~O0;
MAXDATA : con 16%*1024;
ODATA: con int 1 <<1;
OSTAT: con int 1 <<2;
OCREATE: con int 1 <<3;
OMORE: con int 1 <<4;
OREMOVEC: con int 1 <<5;
Tmsg: adt {
tag: int;
pick {
Readerror =>
error: string; #
Attach =>
uname: string; #
path: string; #
Flush =>
oldtag: int; #
Put =>
path: string; #
fd: int; #
mode int; #
stat: Sys—>Dir;
offset: big; #
data: array of byte;
Get =>
path: string; #
fd: int; #
mode: int;
nmsgs: int; #
offset: big; #
count: int;
Remove =>
path: string; #

}

H*

‘reasonable’ iounit (size of .data fields
put/get data

put/get stat

create the file (or truncate)

more data going/comming later

remove after final put.

HoH K HH

tag is unused in this case

user name responsible for rpcs
subtree we want to attach to.

tag for flushed request

of file

for file

bit—or of OSTAT|ODATA |OCREATE | OMORE
for file

for data

of file
of file
bit—or of OSTAT|ODATA | OMORE
max number of Rgets for reply. O==unlimited.
byte offset (ignored for dirs)
max data expected per message

of file

OP(2) Octopus — 2nd edition OP(2)
read: fn(fd: ref Sys—>FD, msize: int): ref Tmsg;
unpack: fn(a: array of byte): (int, ref Tmsg);
pack: fn(nil: self ref Tmsg): array of byte;
packedsize: fn(nil: self ref Tmsg): int;
text: fn(nil: self ref Tmsg): string;
mtype: fn(nil: self ref Tmsg): int;

}s
Rmsg: adt {
tag: int;
pick {
Readerror =>
error: string; # tag is unused in this case
Error =>
ename: string;
Attach or Flush =>
Put =>
fd: int;
count: int;
qid: Sys—>Qid;
mtime: int;
Get =>
fd: int;
mode: int; # bit or of OSTAT|ODATA|OMORE
stat: Sys—>Dir;
data: array of byte;
Remove =>
¥
read: fn(fd: ref Sys->FD, msize: int): ref Rmsg;
unpack: fn(a: array of byte): (int, ref Rmsg);
pack: fn(nil: self ref Rmsg): array of byte;
packedsize: fn(nil: self ref Rmsg): int;
text: fn(nil: self ref Rmsg): string;
mtype: fn(nil: self ref Rmsg): int;
}s
init: fn();
readmsg: fn(fd: ref Sys—>FD, msize: int): (array of byte, string);
istmsg: fn(f: array of byte): int;
packdirsize: fn(d: Sys—>Dir): int;
packdir: fn(d: Sys—>Dir): array of byte;
unpackdir: fn(f: array of byte): (int, Sys—->Dir);
dir2text: fn(d: Sys—>Dir): string;
qid2text: fn(qg: Sys—->Qid): string;
DESCRIPTION

Op provides a Limbo interface for speaking the Octopus File Protocol, Op. See intro(O) for a
description of the protocol.

Init initializes and prepares the module for operation.

Readmsg reads an Op message from fd (a maximum of msize bytes), and returns it as an array of
bytes. The second member of the tuple returned is the error status (nil for no error). When msize is
zero, a reasonable default is chosen by the module.

Istmsg returns non-zero if the array of bytes f corresponds to an Op Tmsg. Tmsg.read is similar
to readmsg, but reads an Op Tmsg and unpacks it using Tmsg.unpack.

OP(2) Octopus — 2nd edition OP(2)

The converse of Tmsg.unpack is Tmsg.pack. It packs a Tmsg into network format, and returns the
resulting array of bytes. The function Tmsg.packedsize may be used to obtain the size of a Tmsg
while packed.

The function Tmsg.text returns a string with a printable representation of the message, for debug-
ging.

In general, the adt for a Tmsg suffices. However, mtype returns a different (small) integer for dif-
ferent Tmsgs , representing its type.

The same set of operations are available for Rmsgs (they are not described again here).

As an aid, packdir packages a directory entry, packdirsize reports the size in bytes of a packed
directory, and unpackdir unpacks a directory entry. These functions are only necessary for reading
directories. Othersize, the stat fields in Tmsgs and Rmsgs suffice.

Dir2text and gid2text return printable strings for directory entries and qids, also for debugging
purposes.

The meaning of the various constants defined is explained in section O of this manual. In general,
directories and qids use the same name (and meaning) used in Styx.

SOURCE
/usr/octopus/port/lib/op.b

SEE ALSO
intro(O), opmux(2), and intro(5).

OPMUX(2) Octopus — 2nd edition OPMUX(2)

NAME

Opmux, rpc - RPC multiplexor for the Op file protocol

SYNOPSIS

include "op.m";
include "opmux.m";
opmux := load Opmux Opmux—>PATH;

init: fn(ofd: ref Sys—>FD, op: Op, endc: chan of string);
rpc: fn(t: ref Op->Tmsg) : chan of ref Op—>Rmsg;
term: fn();

recoverfn: ref fn(): ref Sys->FD;
dump: fn();
debug: int;

DESCRIPTION

Opmux provides a multiplexor for Op connections. It permits issuing concurrent requests through
the same connection.

Init initializes and prepares the module for operation. The other end of the connection reached
through ofd should be a server speaking Op. See intro(O). An implementation for the op(2) module
must be supplied in the op argument. The channel endc can be used to terminate the multiplexor,
by sending anything through it. Usually, the error condition causing the termination is sent
through.

The function rpc makes an Op RPC to the server reached through ofd (given to jnit). It must receive
a valid Tmsg and returns a channel that can be used to obtain the reply as received from the
server. Errors are signaled by means of Rmsg.Error adts sent through this channel. The reply chan-
nel has enough buffering to permit callers of rpc to ignore one reply message. But note that Tget
requests asking to read data from a directory may receive a potentially infinite number of replies,
see get(0) for details.

The global debug may be set to a non-zero value to cause Opmux to print Op messages as they
are sent/received. As an additional aid, dump prints the internal state of the multiplexor (ie., mes-
sages sent with pending replies) for debugging.

The function term terminates the operation of the module, aborting any outstanding RPC.

You may set the pointer recoverfn to point to a function that returns a new descriptor open to
reach the same server, and opmux will try to recover by calling it, should it lose the connection.
This feature is experimental and not tested enough to be trusted.

SOURCE

/usr/octopus/port/lib/opmux.b

SEE ALSO

intro(0), op(2), and intro(5).

05(2)

NAME

Octopus — 2nd edition 0S(2)

SYNOPSIS

Os - helper module for interfacing with the host OS
include "os.m";

os := load Os Os—>PATH;

init: fn();

filename: fn(name: string): string;
run: fn(cmd: string, dir: string): (string, string);

Cmdio: adt {

ifd: ref Sys—>FD; # stdin
ofd: ref Sys—>FD; # stdout
efd: ref Sys—>FD; # stderr
wfd: ref Sys->FD; # wait
cfd: ref Sys—>FD; # ctl
};
frun: fn(cmd: string, dir: string): (ref Cmdio, string);
emuhost: string;
emuroot: string;
DESCRIPTION

Os provides operations common in most servers that export resources from the host OS. The mod-
ule must be initialized by calling init before using any of its other facilities.

Filename returns a string for the file named name in a format understood by the underlying sys-
tem. In particular, it takes care of adding the value of $emuhost as a prefix to the file name
given. It is useful to execute host commands that refer to files known to us, but kept in the host
file system.

Run executes cmd in the host system shell using dir as current directory and returns a tuple with
the command output and an error string. The parameter dir may be nil, in which case the current
directory is not changed for the command.

Frun provides is similar to run but returns file descriptors to let the caller stream input, output,
errors, recover the process wait status, and issue control requests to the process. Upon errors
frun returns a non-null error string and a null reference to a descriptor set.

Emuhost and Emuroot keep the value of the respective environment variables.

SOURCE

/usr/octopus/port/lib/os.b

SEE ALSO

cmd(3).

Octopus — 2nd edition

panels - octopus user interface panel library

m

int;
string;
string;

ref Sys—>FD;
ref Sys—>FD;

Panels Panels—>PATH;

PANELS(2)

int;

fn(name: string): ref Panel;

fn(p: self ref Panel): chan of list of string;

fn(p: self ref Panel, name: string, id: int):
fn(p: self ref Panel, name: string, id: int):

fn(p: self ref Panel, ctl: string): int;

fn(p: self ref Panel): ref Attrs;

fn(p: self ref Panel);

int;

int;

int;

int;

int;

int;

int;

(int, int);

int;

int;

list of list of string; # list of other attrs

PANELS(2)
NAME
SYNOPSIS

include "panel.

panels := load

Panel: adt {
id:
name:
path:
cfd:
dfd:
rpid:
init:
eventc:
new:
newnamed :
ctl:
attrs:
close:

};

Attrs: adt {
tag:
show:
col:
applid:
applpid:
clean:
font:
sel:
mark:
scroll:
tab: int;
attrs:

};

init:

screens:

cols:

TOwWS:

omero:

DESCRIPTION

fn();

fn(): list of string;

fn(scr: string): list of string;
fn(scr: string): list of string;
string;

ref Panel;

ref Panel;

Panels is a convenience module to impement user interfaces for the o/mero window system. Refer
to olive(1) for an introduction and to omero(4) for a description of the file system interface.

Init must be called before calling any other utility in the library, to initialize it by loading required
modules. This also initializes omero with the path to the omero file tree, as reported by the
$omero environment variable.

A Panel represents an o/mero panel. It corresponds to a directory in the o/mero file tree. The
name of the panel, and its absolute path in the current name space are kept in Panel .name and
Panel.path respectively. Applications may give identifiers (numbers) to omero panels. The
identifier for a panel is kept in its Panel.id. Two additional fields, cfd and dfd are available
to hold descriptors to the control and data files for the panel. They may be used by the library,
but they are mostly a convenience for the client program.

PANELS(2) Octopus — 2nd edition PANELS(2)

Before creating any panel, the application must create a directory in the /appl directory of
omero. That is, an initial container panel. This panel is created by Panel.init (which should be
called right after initializing the library to create an application container with the name given in
name). The function returns a reference to the panel. Also, it sets the application process id to that
of the caller process and the panel id to zero. Both things are done via appropriate control opera-
tions on the panel. The control file for this panel is left open (for writing, and to remove on close)
and can be found at Panel.cfd. This means that when the reference to this Panel is lost, the
entire application panel hierarchy is removed by omero.

A new panel may be created by calling Panel.new on a container panel, supplying the desired panel
name and id. The name is randomized by the library, to make it unique and avoid conflicts in the
file system. Panel.newnamed is like Panel.new but does not randomize the name. To remove a
panel, call Panel.close on it.

To create a Panel for an panel that already exists it is allowed to call Panel.init or Panel.new with
nm being an absolute path. In this case a Panel structure is built for panel (and returned).

Control and data files for the panel may be open and used by the application, by appending the
strings /ctl or /data to the value of Panel . path and opening the resulting file name.

Panel.ctl writes a control operation for the panel, using cfd when not null. Panel.attrs reads and
parses a control file, reporting the attributes for the panel by returing a reference to Attrs.

Many attributes are converted to their integer value as an extra convenience. The field name
should make it clear the attribute reported. Other attributes are reported (parsed) in a list of
attributes using Attrs.attrs (containing a list of strings for each attribute).

Panel.eventc returns a channel that can be used to receive events for a panel (and all its inner pan-
els). Usually, it is called once for the top-level panel. The panel identifier contained in the omero
event (or the panel path, also contained) can be used to demultiplex the event stream. Each receive
from the channel returns a list of strings with the event arguments (already parsed): panel path,
panel id, event type, and optional argument string.

What has been said is not enough to make panels appear on a screen. Replicas must be created on
the desired location. To aid in locating an appropriate place, screens returns a list of omero screen
names, cols returns a list of column paths for the given screen name, and rows returns a list of row
paths for the given screen name. Usually, rows keep small informative utilities and most applica-
tion panels are replicated onto columns.

The utility function copy from io(2) can be used to update text or image panels with other file con-
tents, or viceversa.

EXAMPLE

Initialize, and create a text panel containing /NOTICE
panels—>init();
ui := Panel.init("xample");
text := ui.new("text:xample", 1);
sfd := open("/NOTICE", OREAD);
dfd := open(text.path+"/data", OWRITE|OTRUNC);
io—>copy(dfd, sfd);

Show the panel on the first column of the first screen
scr := hd panels—>screens();
col := hd panels—>cols(scr);
text.ctl(sprint("copyto %s0, col);

Start receiving and printing events:

c := ui.eventc();
for(;;){
ev := <—evc;
if (ev == nil)
break;

print("path %s id %s ev %s0, hd ev, hd tl ev, hd tl tl ev);

PANELS(2) Octopus — 2nd edition PANELS(2)

The source of ox(1) and oclock(1) can be used as more elaborate examples.

SOURCE
/usr/octopus/port/lib/panel.b

SEE ALSO
olive(1) and omero(4).

QUERY(2) Octopus — 2nd edition QUERY(2)

NAME
query - octopus network service query module

SYNOPSIS
include "query.m";
query := load Query Query—>PATH;

init: fn(nil: ref Draw—>Context, args: list of string);
lookup: fn(what: 1list of string): (list of string, string);
DESCRIPTION

Query implements a lookup function to locate paths for resources matching attributes as specified
by its what argument. The result is a list of paths for matching resources and an error string. The
module is also a command as described in query(1), which includes a description of special
attribute values.

SOURCE
/usr/octopus/port/lib/query.b

SEE ALSO
query(1) and netget(2).

SPOOLER(2) Octopus — 2nd edition SPOOLER(2)

NAME
spooler, view, print - file spooler module interface for use with spool
SYNOPSIS
include "spooler.m";
sppoler := load Spooler MOD->PATH;
Sfile: adt {
fd: ref Sys—>FD; # avail to be used by spooler
sval: string; # avail to be used by spooler
start: fn(path: string, endc: chan of string): (ref Sfile,
stop: fn(file: self ref Sfile);
status: fn(file: self ref Sfile): string;
};
init: fn(args: list of string);
status: fn(): string;
debug: int;
DESCRIPTION

A spooler is a module that implements this interface. It is intented to be given as an argument for
spool(4), which is a file server that implements the spooling interface seen by the user.

Each file being spooled is represented by a Sfile. The function Sfile.start is called to start spool-
ing for a file with a path name. The function must send either nil or an error string through endc
when the file has been processed. But note that endc may be nil and nothing has to be sent in
that case. The function must return an appropriate Sfile containing what is needed to imple-
ment Sfile.stop and Sfile.status . Both Sfile.fd and Sfile. sval are available for internal use
of the module implementor.

Sfile.stop must stop processing the file, and release any resource held for its processing.
Sfile.status must return a string with the status for the spool request corresponding to the file.
Status must return a string (perhaps multiple lines) with the status of the spooling service.

The global debug will be set to either zero or non-zero from outside to ask debug diagnostics
when set.

Clients must call init before calling any other service from a Spooler module

EXAMPLE

See /usr/octopus/port/lib/view.b or /usr/octopus/MacOSX/print.b

SEE ALSO

spool(4).

string

TBL(2) Octopus — 2nd edition TBL(2)

NAME
tbl - octopus generic integer table module

SYNOPSIS
include "tbl.m";
tbl := load Tbl Tbl->PATH;

Table: adt[T] {
items: array of list of (int, T);
nilval: T;

new: fn(nslots: int, nilval: T): ref Table[T];
add: fn(t: self ref Table, id: int, x: T): int;
del: fn(t: self ref Table, id: int): T;
find: fn(t: self ref Table, id: int): T;
};
DESCRIPTION
Tbl is a generic hash table, indexed by integer values. It is taken (stolen) from the implementation
of styxpersist(2).
New creates a new table with nslots buckets in the hash. The nilval argument should be a null
value of the appropriate type.

Add adds an element to the table using id as the key. If an element with the same key exists it
returns —1 and refuses to add the given element.

Del removes an element with the given id from the dable, and returns it.
Find looks up the element with the given id and returns it.

EXAMPLE
Create a has table of references to File with 103 buckets, and add a file with key 0 to it.
nullfile: ref File;
files = Table[ref File].new(103, nullfile); # use a prime number as
files.add(0, ref File("/a/file", nil));

SOURCE
/usr/octopus/port/lib/tbl.b

size.

TBLKS(2) Octopus — 2nd edition TBLKS(2)

NAME
tblks - text data blocks

SYNOPSIS
include "tblks.m";
tblks := load Tblks Tblks—>PATH;

Str: adt {
s: string;

findr: fn(s: self ref Str, pos: int, c: int, lim: int): int;
find: fn(s: self ref Str, pos: int, c: int, lim: int): int;
};
Tbhlk: adt {
b: array of ref Str;
new: fn(s: string): ref Tblk;
pack: fn(blks: self ref Tblk): ref Str;
ins: fn(blks: self ref Tblk, s: string, pos: int);
del: fn(blks: self ref Tblk, n: int, pos: int): string;
seek: fn(blks: self ref Tblk, pos: int): (int, int); # (index in b
blen: fn(blks: self ref Tblk): int;
getc: fn(blks: self ref Tblk, pos: int): int;
gets: fn(blks: self ref Tblk, pos: int, nr: int): string;
dump: fn(blks: self ref Tblk);
};
init: fn(sysm: Sys, strm: String, e: Error, dbg: int);
fixpos: fn(pos: int, n: int): int;
fixposins: fn(pos: int, inspos: int, n: int): int;
fixposdel: fn(pos: int, delpos: int, n: int): int;
strstr: fn(sl, s2: string): int;
strchr: fn(s : string, c : int) : int;
dtxt: fn(s: string): string;
DESCRIPTION

Thlks provides support for text handling. The Tb1k data type represents text. It is organized as an
array of strings, Tb1lk.b, making up the whole text. To avoid too much string copying, an auxil-
iary Str data type is used to keep references to strings.

Init should be called before using the module. It receives pointers to auxiliary modules loaded by
the client program including sys(2), string(2), and error(2).

Tblk.new creates a new Tb1lk and returns a reference to it. The argument s represents initial con-
tents for the text.

Tblk.pack packs all the strings in a single Str. After calling pack the single string (returned by
the function) can be used to operate on the text using standard Limbo utilities. Various functions
from the module may call pack when convenient.

Thlk.ins inserts s at pos in the text; Thlk.del deletes n runes starting at pos in the text (it returns
the deleted string).

Thlk.seek translates a position pos into a couple of indexes: one locating the string in Tblk.b
containing the position; another locating the rune within that string.

Tblk.len returns the number of runes in the text.

Tblk.getc returns a single rune at pos from the text and Tblk.gets returns a substring starting at
pos and consisting of ar runes.

The auxiliary Str.find and Str.findr may be used to locate a rune c in the string given, not passing
lim runes.

Other auxiliary functions like strchr and strstr are provided by the module for compatibility.

TBLKS(2) Octopus — 2nd edition TBLKS(2)

Fixpos ensures that n is in range (adjusting it if needed). Fixposins adjusts pos assuming that n
runes have been inserted at inspos so that it refers to the same (relative) place in the text.
Fixposdel is similar but adjusts for deletions.

Dtxt returns a short string useful to print any string for debugging.

EXAMPLE
See the source for olive(1) as an example of use.

SOURCE
/usr/octopus/port/lib/tblks.b

XPROC(2) Octopus — 2nd edition XPROC(2)

NAME
xproc - auxiliary processes
SYNOPSIS
include "xproc.m";
xproc := load Xproc Xproc—>PATH;
Terminate : con -1;
Shrink: con —-2;

Proc: adt[T,R] {

serve: ref fn(x: T): R;
flush: ref fn(x: T): R;
init: fn(p: self ref Proc[T,R]): (chan of (int, T, chan of R), chan o
};
DESCRIPTION

Xproc implements a dynamic pool of auxiliary processes to apply a given function to a set of con-
current transaction requests. This pool is represented by a variable of type Proc[T, R] that the
client must instantiate with a reference to the transaction request adt and a reference to the reply
adt. The implementation also uses Proc[T, R] to represent each individual auxiliary process, but
this is uninteresting for the client module.

Before using the process pool, the client must assign an appropriate function to Proc.serve . This
function must return an appropriate reply for a given request. Also, if requests may be interrupted
(as described below) a function that returns an appropriate reply to an interrupted (given) request
must be assigned to Proc.flush .

After initializing Proc.serve and perhaps Proc.flush on the variable representing the pool the client
module should call its Proc.init function.

Proc.init returns two channels: one to send requests to and one to send interrupt (flush) requests
to. A request is made of a tuple consisting of an unique integer identifying the request, the
request proper, and a channel where to send the reply. An interrupt request is made of a tuple
consisting of the integer for the flushed/interrupted request and a channel where to send the
flushed request (if any).

Both the request and reply types should be references. Because a single process is used to both
receive requests and deliver replies, reply channels sent in requests should not block (they should
have buffering or have a process receiving from them before further requests are sent).

The module arranges for each request to be processed by Proc.serve using an independent pro-
cess. Processes are created on demand, but are never terminated. However, interrupting a request
does kill the process that is processing it. At any moment the client may send a null request with
the tag Shrink to terminate any auxiliary process idle at the time of the call. Sending a null request
with tag Terminate terminates the module and all auxiliary processes.

When a request is interrupted Proc.flush is called to obtain its reply, which is sent to interrupted
request reply channel (to signal its interrupt). A copy of the interrupted request is sent to the reply
channel specified in the interrupt request. If the interrupted request does not exist (or was com-
plete) a null reply is sent through the interrupt request reply channel.

EXAMPLE
xserve: fn(t: ref Req): ref Rep;
xflush: fn(t: ref Req): ref Rep;

dnitialize

p := ref Proc[ref Req, ref Rep];
p.serve = xserve;

p.flush = xflush;

(rc, fc) = p.init();

XPROC(2) Octopus — 2nd edition XPROC(2)

send a request with tag 15
repc := chan[1l] of ref Rep;
rc <—-= (15, ref Req(...), repc);

flush it and get the flushed request
flushedc := chan[1l] of ref Req;

fc <—= (15, flushedc);

flushed := <—flushedc;

get the reply for request 15
(interrupted or not)

rep := <— repc;

terminate operation

rc <—= (Terminate, nil, nil);
SOURCE

/usr/octopus/port/lib/xproc.b
SEE ALSO

A concurrent Window System. Rob Pike. Computing Systems. 1989.

DAV (4) Octopus — 2nd edition DAV (4)

NAME

dav - web dav file server
SYNOPSIS

o/dav [-dr][-a addr]
DESCRIPTION

Dav is a WebDAV file server that exports an Inferno name space through the WebDAV protocol, as
described in RFCs 2518 and 2616.

Its primary usage is to let the host operating system (for systems other than Plan 9) use the name
space of the Inferno.

By default, it spawns a backgroup process that listens for clients at port 9999 on the loopback net-
work interface. Option —a may be used to make it listen at addr instead.

Flag —r makes the server read-only, for safety.
Flag -d activates debug diagnostics. Repeating the flag one or more increases the verbosity.

SOURCE
/usr/octopus/port/dav

SEE ALSO
rfc2518, rfc2616, and rfc3744. for the protocol.

BUGS
The program is new and has been tested only with MacOS X Leopard. ACL processing is incom-
plete at most. Use with caution. Also, there should be a way to export only part of a namespace.
A bug in bufio(2) requires using the fixed version found at Isub for this module.

MUX(4) Octopus — 2nd edition MUX(4)

NAME

mux - file system multiplexor with fail over support
SYNOPSIS

o/mux [—abcd] [-m mnt] attr val . . .
DESCRIPTION

Mux serves a name space coresponding to any resource registered using registry(4) that matches
attributes and values specified by attr and val arguments, including special values described in
query(1). By default, it speaks Styx in the standard input, for use with mount(1) as in the example.
Flag —m can be used to ask mux to mount itself at mnt. Options —abc determine the mount flag,
as in bind(1).

Mux assumes that, for each registered resource, an attribute with name path contains an absolute
path for reaching its root directory in the current name space. It simply picks one of the matching
resources and serves (using Styx) its file tree. Note that the convention in the Octopus is that the
registry contains paths valid on the PC Inferno’s namespace. Terminals and host systems names-
paces may differ.

Upon failures (eg., I/O errors) of the resource, mux switches over to any other resource also match-
ing the attributes.

Upon failure, open fids for the failing resource report 1/O error to the client process(es). However,
any other fids are switched to use files in the new resource used. Qids are rewritten by mux so that
bind(2) could be used, and caching of multiplexed files still works.

Flag —d is used to debug the program, and makes it very verbose.

EXAMPLE
Given this registry, leave at /n/who any resource named who that works. Also, mount at
/n/uwho any such resource, as long as its known location is the same known for the user, as
reported in /n/who/$user/where.
% cat /mnt/registry/index
pc!where arch Plan9386 loc none path /term/pc/where name where
pc!who arch P1an9386 loc none path /term/pc/who name who
pc!what arch P1an9386 loc none path /term/pc/what name what
Atlantian.local!who loc home path /term/Atlantian.local/who name who
Atlantian.local!what loc home path /term/Atlantian.local/what name what
% mount —Ac {o/mux name who} /n/who
% o/mux -m /n/uwho name who loc ’$user’

SOURCE
/usr/octopus/port/mux

SEE ALSO
namespace(4), netget(1), and pcns(1).

NAMESPACE(4) Octopus — 2nd edition NAMESPACE(4)

NAME

namespace, ons - octopus name space and conventions

DESCRIPTION

In the octopus, there are several name space conventions and programs rely on them. This manual
page documents such conventions. Besides, depending on where the namespace is used, it is sen-
sible to adhere to Inferno or to the host OS (eg. Plan 9) conventions as well.

The script ons adjusts the Inferno name space to adhere the octopus conventions.

There are several name spaces of interest, depending on where the application executes (or where
are we browsing files from). Most times, applications and browsed files belong to the host system
of the PC (eg., Plan 9). The next subsection documents such name space. A following section docu-
ments the name space as found on the Inferno running at the PC.

PC Name space

This section assumens the PC host system is Plan 9 from Bell Labs. Adjustment of nhame spaces in
other native host systems is not yet supported, although it will be in the future.

Most conventions of Plan 9 name spaces hold, like using /bin for binaries and /usr for user
files. The following files and directories are also available when using the PC from the Octopus:

/dev/snarf The clipboard. Usually it is an actual file at bound to along with the
next file.
/dev/sel contains the path for the (user interface) panel where a selection

was last made. The file is kept at $home/1ib/snarf/sel or a
similar place and bound to /devV like before.

/mnt contains directories where different resources added to the PC can
be found.

/mnt/ui contains the file system interface for the Octopus window system,
Omero. See omero(4) for a description.

/mnt/ports contains a directory providing the event delivery mechanism used
by the Octopus.

/mnt/view is a file viewer device. To view a file (e.g., a PDF) it suffices to copy

it to this directory. A document viewer at a terminal near the user
(probably one at the terminal being used to request the copy) will
be launched as a result of the copy.

/mnt/view/ndb is a text file describing properties of the view device. Among other
things it describes the location of the device and the terminal pro-
viding it.

/mnt/print is a printing device. To print a file, copy it to this directory. The file

will be printed at the default printer queue provided by a terminal
near the user.

/mnt/print/ndb describes the print device. All devices include an ndb file by con-
vention (although we will not mention it further).
/mnt/print/voice is a voice synthesis device. To speak some text, copy it to the

speak file it provides. As all other devices mounted at /mnt the
device used will be one near the user.
/mnt/terms/terminal is a directory where devices and resources from the machine
terminal can be found. There are multiple terminals mounted below
/mnt/terms in the same way. We mention some devices next,
but not all of them would be provided by all terminals. The devices
found directly at /mnt come indeed from the ones we mention
here.
/mnt/terms/terminal/view
is the view device provided by the terminal.
/mnt/terms/terminal/print
is the print device from that terminal.
/mnt/terms/terminal/voice
is its voice synthesis device.
/mnt/terms/terminal/fs contains the file system from sysname (from its native OS, not from
the Inferno it runs). This can be used to transfer files back and

NAMESPACE(4)

/n/pc

/what

/what/machine
/what/machine/where
/what/machine/radius

/what /machine/owner
/who

/who/user
/who/user/where
/who/user/last
/who/user/status

Octopus — 2nd edition NAMESPACE(4)

forth between the PC and the terminal.

contains the name space of the Inferno running at the PC. All
resources described before in this list come from this file tree.
contains information about machines.

contains information about the system named machine.

contains the machine location.

contains the RTT for performing a particular FS operation on the
machine from the PC.

contains the name of the user owning the machine.

contains information about users.

contains information about user user.

contains the last known location for the user.

contains the name of the last terminal used by this user.

contains the status of the user. It is usually on of online, busy,

or away.

PC Inferno name space
The name space space at the Inferno running on the PC is similar to that of any other Inferno
installation, but includes the following files and directories. Unless said otherwise, the directories
mean the same the do in the name space of the PC.

TP /dis/o contains the Dis binaries for the Octopus.

/dis/o/$emuhost contains Dis binaries for the Octopus intended for the host system repre-
sented by the $emuhost variable. This directory is bound also at /dis
to add platform dependent binaries to the portable ones.

/mnt/registry is the mount point for the registry, describing resources known by the
Octopus.

/mnt/ui

/mnt/ports

/mnt/snarf contains the snarf and sel files found at /dev in the PC.

/mnt/view

/mnt/print

/mnt/voice

/mnt/fs contains the PC name space, including the files described before for the
PC.

/mnt/what is the PC /what directory, and contains information about machines.

/mnt/who is the PC /who directory and contains information about users.

/terms is similar to /mnt/terms in the PC.

Terminal name space
The name space at the Inferno running on a terminal has the file tree of the PC’s Inferno at /pc
(using the Octopus protocol as the file protocol) and also at /n/pc (using Styx as the file proto-
col). The former works better on poor network connections but the later is closer to expected
semantics for file access. Also, /mnt/registry /mnt/snarf and other devices from the PC
are available for use by terminal software.

SOURCE
/usr/octopus/port/ons

SEE ALSO
nsbuild(1), wm(1), newns(2)

OFS(4) Octopus — 2nd edition OFS(4)

NAME

ofs - mount a file server speaking Op using Styx
SYNOPSIS

o/ofs[-Adv][-Calg][-k keyfile] [—m mnt] [—c dir] netaddr [path]
DESCRIPTION

Ofs dials the Op file server found at addr and mounts it at mnt. Here, addr may be a file represent-
ing a connection, like /fd/0 or any other file. It speaks both Styx (as a server) and Op (as a
client) and provides a Styx file server to mount in Inferno file trees served from Op servers. Usu-
ally, the server mounted is oxport(4), used to export a name space using Op. The path (subtree)
served by the Op server is / by default, but may be supplied as an option.

This program exists because Op is faster than Styx, regarding latency, on network links with bad
latency, being the main reason that Op requires less RPCs than Styx for doing the same thing.
However, there are some issues to be taken into account when using this program to export
devices. See intro(O) for a discussion.

In general, files are retrieved from the server with a single get(O) operation. Big files require fur-
ther RPCs. All writes are indeed write-through, although those that are not the first write, and use
a full Styx packet, are sent asynchronously (like in delayed writes).

If mnt is given, it mounts itself using flags MREPL and MCREATE at the directory named by mnt.
Otherwise, it uses standard input to serve files speaking Styx (this is intended for use with
mount(1).

By default, ofs authenticates the client when mounting itself, and encrypts the channel using RC4.
Authentication can be disabled with the —A flag, and the algorithm used to sign/encrypt the chan-
nel may be changed using —C and supplying the algorithm name in arg (as said in ss/(3)). The
key-file used for authentication follows the standard convention used in Inferno, but may be other-
wise specified to be keyfile using —k.

When the special name auto is given in mnt the program reads a system name from the connec-
tion, before mounting it, and uses /term/remotename to automatically mount the remote tree.
The system name is read by first reading 9 bytes, which should be a UTF-8 string with 8 digits in
printable form and a new line. Then, it reads so many bytes and takes that string (in UTF-8) to be
the remote system name.

Flag —d enables (very) verbose debug diagnostics. Trying to access a file named ! ! DUMP dumps
the internal state of the cache, for debugging.

Flag —v makes the program report some protocol statistics before exiting.

Flag —c instructs ofs to use a local, on-disk, cache located at dir to keep files fetched/update
from/to the server. The cache is only used to serve read requests for files that are not entirely
cached on-memory (that is, for files that are not quite small). The directory structure reflects that
of the server. One nice side-effect of using this cache is that files updated to the server are still
kept in the local disk, should the connection to the server fail.

EXAMPLE
Import (using Op) a remote file tree and mount it at /n/pc.

o/ofs —-m /n/pc tcp!opserver.org!10000

Import a locally-served file tree using mount (ie., start Ofs using standard input as the Styx con-
nection).

mount -c {o/ofs -C rc4 +tcp!127.0.0.1!'10000} /n/pc

Listen for calls from a remote export program, and make remote trees available at
/term/$remotesysname (encrypting the channel). Where, $remotesysname is given by the
export program at the other end.

listen —tv ’tcp!*!117004° {
o/ofs -A -d —m auto /fd/0 >[2]/dev/cons&
¥

OFS(4) Octopus — 2nd edition OFS(4)

SOURCE
/usr/octopus/port/ofs

SEE ALSO
intro(O) and oxport(4).

OMERO(4) Octopus — 2nd edition OMERO(4)

NAME
omero - octopus window system

SYNOPSIS
o/mero [—abcdi] [—m mnt]

DESCRIPTION
O/mero is the Octopus window system, as introduced in olive(1). Here we describe the file system
interface.
By default, o/mero mounts itself at /mnt/ui. Flags —abc are similar to the bind(2) flags of the
same name. Option —m can be used to select mnt as the mount point instead of the default
/mnt/ui. Under flag —i the standard input is used as a connection to the client.
O/mero provides GUI components known as panels, like rows, columns, buttons, sliders, and oth-
ers described below. Perhaps surprisingly, o/mero does not draw and does not interact with the
mouse or keyboard. O/live is a viewer for o/mero that does it, as said in olive(1).
The root directory contains a directory named appl where applications create their panel hierar-
chies, one extra directory per screen or session, and a file named olive used by the viewer to
receive updates from the window system and to send requests to it.
Each panel is represented by a directory that contains some files, the most important are files
named ctl, and a data. Panels can be created and deleted by making and removing such direc-
tories. Rows and columns have one extra subdirectory for each one of the panels they contain,
and do not contain a data file. The file system can be used to move, copy (i.e. replicate), and
delete panels. The applications affected are usually unaware of this fact.
The name of a directory determines the type of panel it represents. A name is of the form
type:name (eg. text:ox.3442). Usually, name is a string randomized by the application to
permit any two names to cohexist within the same directory (i.e., within the same container panel).
Type is any of the following:
row A container panel arranging children in a row.
col A container panel arranging children in a table.
image Animage in Plan 9 format.
text An editable text panel.
tbl An editable text panel that insists on tabulating the words contained.
label A single line (small) read-only text panel.
button A single line (small) read-only text panel customized to behave as a button.
tag A single line editable text panel. Usually to inform the user of sibling panels and to pro-

vide a place to type some text.
gauge A meter to show a value between 0 and 100.
slider An editable meter to show a value between 0 and 100 and let the user adjust it.
page An image in Plan 9 format supporting paning. To view large images.
draw A vector graphics device. Used to draw geometrical figures.
O/mero (or rather, o/live) uses the file /dev/snarf as the clipboard, to put there the bytes
when a cut operation snarfs them. The file /mnt/snarf/sel is updated with the file system
path for the last text panel where some text was selected. This does not consider tag lines and is
a convenience for executing commands that operate on selected text.
Panel Files

Panel directories contain a data and a ctl file. The data file contains a portable representation
of the graphical panel, text for most panels and Plan 9 images for images. The ct1 file contains a
textual representation of the panel attributes. Some attributes are common to all panels and are
described together later. The textual representation for an attribute may be issued as a control
request by writing it to the control file of a panel. Each control request is terminated by a newline
character.

Both files are complete descriptions (i.e. they are not streams), which means that tools like tar(1)
can be used to take a snapshot of a hierarchy of panels.

Applications are expected to read, write, create, and remove panel files using the
/mnt/ui/appl file tree. Panels found there are not shown by default at any screen. Instead, a

OMERO(4) Octopus — 2nd edition OMERO(4)

panel can be replicated at other places under /mnt/ui by issuing control requests. A panel repli-
cated at a directory /mnt /ui/dir has a mirror of its file tree at that directory. Operations made
to the files at /mnt/ui/appl affect all the replicas (the panel itself). Operations made to the
files at /mnt /ui/dir (ususally done by viewers) are made to that replica. Most of the operations
also update the panel (and any other replicas), but some (eg., hidding the panel) do not.

Attributes and control requests
These are both attributes and control requests common to all panels. Depending on the panel
type, additional attributes and/or control requests may exist as described later.

tag Activates a tag for the panel. This permits using the mouse and keyboard com-
mands described in olive(1) for tags.

notag Ceactivates it.

hide Hides the panel,

show Makes a hidden panel visible.

appl id pid Sets the panel as an application panel, identified by id (reported back along

with events for the panel), handled by the process with the given pid. If a pid is
set to —1 the panel is not associated to any process. Otherwise, an interrupt
request causes o/mero to try to interrupt that process.

layout The counterpart of appl. It flags the panel as one used just for layout pur-
poses.

copyto dir[pos]
Informs of a replica of the panel (or establishes a new one when issued as a
control request). The destination dir should be an absolute path starting from
the o/mero root directory (eg. /mnt/ui) and showing where to ““copy’ the
panel. The optional pos argument is a number indicating the position for the
panel in the target container (1 for the first, 2 for the second, etc.)

The following control requests may be issued but do not correspond to panel attributes:

moveto dir[pos]
Is similar to copyto but it is meant only as a control request at a replica. It relocates the
replica to a different path. It is equivalent of a copyto request followed by a close request
for the original replica.

top Makes the panel full-screen (by zooming to it).
pos n Sets the position of the panel to nin its container.

hold Prevents o/mero from sending events notifying of changes to the panel (and its children)
until the moment when the control file is closed or the next request is issued.

release
Makes o/mero release the hold on the panel (and inner ones).

look what
Causes the panel to post an event to the application to look for what. The argument is ter-
minated by a newline character. It may be more than a single line of text, and the conven-
tion is to replace ew lines within the argument with the SOH character (ASCII 1).

exec cmd
Causes the panel to post an event to the application to execute cmd. The argument is han-
dled as in 1ook regarding newline characters.

By default, container panels have the attributes tag, show, and appl 0 -1; and all other pan-
els have the attributes notag, show, and appl 0 -1.

Panels
What follows documents the list of panels along with the format of their data files and their spe-
cific control requests.

Row and col are the two container panels. They contain the order

attribute (also a control request). Its arguments are the names for the panels contained in the con-
tainer. The order of the arguments corresponds to the order of the panels on the viewer. New pan-
els created inside the container are added to the end of this attribute.

Image panels hold Plan 9 images as data. The size of the panel is that of the image. Its ct1 file
contains

OMERO(4) Octopus — 2nd edition OMERO(4)

size nx ny
besides other attributes, to report the size of the image measured in pixels.

Page is like image but grows depending on available space and allows mouse interaction to see
images bigger than the space available.

Text is a text panel that permits edition. The content of the data file is the text being edited. See
olive(1), for a description of the user interaction for this panel. The following attributes and con-
trol requests are specific of text panels:

dirty Flags the panel to indicate edits not sent to the application (i.e., unsaved changes).

clean The opposite of dirty.

sel nm Indicates (or sets) the selection to include runes from the n-th to the m-th. When both
values are the same the selection is null and corresponds to the insertion point for the
panel.

font F Sets the font for the panel to F. Where F may be any of B, I, L, R S and T (bold, ital-
ics, large, roman, small, and fixed-width).

tab wid Sets the tab width to wid.

usel permits the panel to update /mnt/snarf/sel to record the path of the panel with
the last selection. This is the default (but note that none of tags, tables, buttons or
labes update that file).

nousel prevents the panel from updating the last selection file.

scroll puts the panel in scroll mode (the frame shows the last text added and it keeps at most
16Kbytes of text).

noscroll
puts the panel in no-scroll mode (the default, keeping all the text placed in the panel
and preserving the position shown by the frame despite appends of new text).

The following requests are understood for text panels but are not attributes:

ins tag vers pos text
Inserts text at position pos in the panel, but only the the Qid. vers for the data file
matches vers. Tag is a user chosen identifier sent along with any insert event resulting
from the control request (so that the sender may identify the operation as its own one).
del tag vers pos n
Deletes n runes starting at position pos in the text. Tag and vers are similar to those
of the ins request.
Thl, label, tag, and button panels are similar to text.
Gauge and slider contain in their data files a numeric value between 0 and 100 corresponding to
a graphical representation of a gauge.
Draw is a graphical panel for vector graphics. The data file contains a textual representation of
drawing commands (one per line). The following commands are understood:
ellipse cxcyrxry[wcol]
Draws a ellipse with center (cx,cy) and rx and ry as radiuses. The width of the line is w and
the color is col (which is a string naming a color; most of the typical ones are available. See
the implementation for a full list.)
ellipse cxcyrxry[col]
is similar but draws a filled ellipse.
line ax ay bx by[ea eb r col]
draws a line from (ax, ay) to (bx,by). Arguments ea and eb are small integers that select a
line ending at the former and the latter point. The width of the line is given by r and col
selects the color for the line.
rect ax ay bx by[col]
Draws a rectangle with opposite corners at (ax,ay) and (bx, by). Col selects the color for
the lines.
poly x0 y0 x1 yl...xnyne0enw col
draws a polygon. Arguments indicate the points, EO and en indicate endings, w the line
width and col the color.
bezspline x0 y0 x1 yl...xnyn e0 en w col
is similar but draws a spline curve.
fillpoly x0 y0 x1 y1...xnyn w col
is like poly but fills the polygon.

OMERO(4) Octopus — 2nd edition OMERO(4)

fillbezspline x0 y0 x1 y1...xnynw col
is like bezspline but fills the region delimited by the spline.

Events
Events are sent using ports(4). All events are terminated on a newline character (not considered
part of the event data). By convention, newlines part of the event data are escaped by replacing
them with ASCIl 01. All events start with the string omero:, followed by the panel id (as set
using the appl control request) and the panel path (eg. /appl/draw:clock).

The following events are sent from o/mero to the application, in response to user interaction or to
operations on the file system.

o/mero: id path 1ook arg

o/mero: id path exec arg

o/mero: id path close

o/mero: id path click buttons x y time
o/mero: id path keys str

o/mero: id path interrupt

o/mero: id path clean

o/mero: id pathdirty

Look and exec notify that the user is looking for arg or tries to execute arg. Close notifies that
a panel is no longer being viewed. This event is posted when the last replica is closed (also when
the panel files at /appl are removed).

Click and keys report mouse and keyboard activity. This is only done for vector graphics pan-
els. Keyboard is also reported for non-editable text panels.

Interrupt notifies the application that the user wants to inerrupt it.
Clean and dirty report that panel does not have (or does) unsaved changes.

SOURCE
/usr/octopus/port/live
/usr/octopus/port/mero

SEE ALSO
panels(2), olive(1), and ox(1).

OPHONE(4) Octopus — 2nd edition OPHONE(4)

NAME

ophone - export nokia n95 services

SYNOPSIS

ophone

DESCRIPTION

Ophone serves a name space with the nokia n95 devices. Ophone works like oxport(4) and must be
mounted with ofs(4). It listens requests on port 7000.

The following files are exported:
audio/midi

This file storage midi bytes that are ready to loud.
audio/mp3

Similar first but mp3 bytes.

audio/ctl
This file allow users control the player. Three comands have been implemented: play, stop
and clear.

contacts
The file which exports the contacts list. The contacts has the following format:
lastname:name:telefone

files
Under this directory are exporting the files hierachy of the telefone. (SDCard, memory, etc.)

sms

lowing format:

This file allow send a sms through the phone. It’s necesary write, in this file, senteces with the fol-

<phone number>:<text>

The phone number must not start with '+’. The text of the sms will be trunc at 150 characters.

kbd

this file returns two kinds of sentences:

The keyboard file export all the keypad events while the Playground window is in use. Each read of

mx y buttons msec:
For the mouse events triggered by the arrows and the fire button. x and y are the position where
the pointer must draw. The buttons that are being pressed during the events are reference in
buttons.

kchar msec:
For the numbers key events. char is the key that trigger the event.

In all cases,msec is a time stamp for the event.

EXAMPLE

After starting Ophone in nokia n95. Devices can be mounted run
o/ofs —-A -m /n/phone tcp!n95!7000

For playing a MP3 file use
cp song.mp3 /n/phone/audio/mp3
echo play > /n/phone/audio/ctl

Write and send a sms:
echo 555000555:Hi all! > /n/phone/sms

OPHONE(4) Octopus — 2nd edition OPHONE(4)

SOURCE
/usr/octopus/n95/*

SEE ALSO
ofs(4) and oxport(4).

BUGS
For the time being, ophone serves files and contact list phone as read-only and does not support
autentication, for that reason ofs must be used with -A flag.

OXPORT (4) Octopus — 2nd edition OXPORT (4)

NAME

oxport - export name space on a connection using Op

SYNOPSIS

o/oxport [-Ad][-L ms]|[-x addr] dir

DESCRIPTION

Oxport serves a name space rooted at dir over a connection to an Op client. The connection is
indeed standard input, because the program is implemented to be used with listen(1). Using
oxport is more efficient in terms of latency than using export(4) for RTTs of 1ms or more.

The program does not fork the current name space, any change to the current name space will be
visible to clients. This is appropriate for exporting the PC name space to terminals, while still see-
ing any change made to the exported namespace (eg., new terminal arrivals) but it means that care
has to be taken to avoid deadlocks (caused whenever the exported namespace is mounted in the
namespace used by the program).

The connection is assumed to be trusted and authenticated, on the name of the first user attaching
to the exported file tree.

Flag —x can be used to make oxport dial addr and serve dir over the connection, after reporting
the local system name to the other end. See ofs(4) for the details. This is used in the octopus to
export portions of terminals to the central PC. In this case, the program authenticates and
encrypts the connection, unless —A is given as an option.

Note that in the usual case of running oxport from listen it will not authenticate or encrypt the
channel. That is assumed to be done by listen and not by this program.

Flag —L is used to debug the protocol by pretending that the RTT for a RPC is at least ms millisec-
onds for a message. The implementation is a call to sleep(2) before attending each client request.
Client requests are served concurrently, thus this should not affect throughput.

See intro(O) for a description of the protocol spoken. This is important if this program is being
used to export devices.

EXAMPLE

Export (using Op) the entire file tree seen in the current name space to clients connecting to
tcp!127.0.0.1!14242 (without authentication nor encryption of the communication channel,
but with debugging messages enabled):

listen —-At tcp!127.0.0.1!4242 oxport —-d / >[2]/dev/cons
Export our home directory to clients that authenticate, encrypting the communication channel:

listen —-a rc4 -t tcp!127.0.0.1!'10000 {o/oxport /usr/nemo}
Export the directory /term to the Op client listening at the given address:

o/oxport —x tcp!alboran!16699 /term

SOURCE

/usr/octopus/port/oxport.b

SEE ALSO

BUGS

intro(O) and ofs(4).

Currently, oxport denies access for subtrees of the directory exported other than / (that is, it pre-
vents the use of the field path in attach(O) requests).

PORTS(4) Octopus — 2nd edition PORTS(4)

NAME

ports - event ports file system

SYNOPSIS

o/ports[-abcdi]l[-gqn][—-m mnt]

DESCRIPTION

Ports provides text event delivery through its file interface. It serves a directory with a post file
that can be used to post events. By default it mounts itself at /mnt /ui unless flag —m is used to
request mounting at mnt or flag —i is used to request reaching the client through standard input.
Flags —abc are similar to those of mount(1).

Each write(2) on the post file is considered an event. Events are supposed to be small enough to
fit in a single write, and they are handled as strings by ports. All events should terminate with a
new-line character. Multiple events can be written together.

To listen for events, additional files may be created in the directory served. Each file created repre-
sents a listener for events. Once created, a regular expression in the format supported by regex(2)
must be written to the file, to program it to listen for matching events. Events written to post but
not matching this regular expression will be ignored (for this file). The regular expression can be
changed by further writes, but it will not affect events already queued for delivery.

Each read request for a listener file will return a single event by default. This can be changed by
writing multi to the file. In this case, all queued events that fit in the read buffer will be delivered
for a single request (without splitting events between multiple reads).

Events are queued up to a maximum of 128 events (or n if —q is given in the command line).
Should the queue become full (due to a slow event reader client), old events will be discarded.

Note that listener files do not need to be open during the entire process. That is, an application
may create a listener file, close it, reopen it, write a regular expression, close it, reopen it, and loop
reading events. This is done so to simplify the use of ports from shell scripts and to admit proto-
cols like Op.

When a program does not read events for more than one minute, and the queue for the listener file
is full, it is considered an error and the listener file is removed.

If a file with name unsent is created, events not posted to any other file will be delivered to it.
This file can be used to detect events not received by anyone else.

SOURCE

/usr/octopus/port/ports.b

SEE ALSO

plumber(8)

SNARF (4) Octopus — 2nd edition SNARF (4)

NAME

snarf - shared clipboard file system
SYNOPSIS

o/snarf[-abcd][-mmnt] ...
DESCRIPTION

Snarf is a file server that mounts itself above /chan to intercept I/0 to /chan/snarf and
maintain a shared clipboard. But note that it does not bind above /dev (so that /dev/snarf
still refers to the local clipboard). The program assumes that snarf(3) is already bound if needed.

The clipboard is kept at /mnt/snarf/buffer which is expected to be a file shared among the
cooperating machines.

When /chan/snarf is written snarf updates the shared clipboard and the local one and then
posts an event to ports(4) with the string /mnt/snarf/buffer to let others know of the
update. When snarf receives such event it reads the shared clipboard and updates the local one.

Flag —m can be used to ask snarf to mount itself at mnt. Options —abc determine the mount flag,
as in bind(1). Flag —d is used to debug the program, and makes it very verbose.

SOURCE
/usr/octopus/port/snarf.b

SEE ALSO
snarf(3)

SPOOL(4) Octopus — 2nd edition SPOOL(4)

NAME

spool, view, print - file spooler viewer and printer

SYNOPSIS

o/spool [-abcdr] [-m mnt] module [moduleargs] . . .
view

print [printername]

DESCRIPTION

Spool serves a flat directory that can be used to operate on files by copying them into it. What is
done to files copied into this directory depends on the module given as an argument. For example,
using view as a module provides a file viewer and using print provides a printer spooler. Any mod-
ule implementing spooler(2) can be used. Spooled files are copied into local storage and kept in
the directory served. They are handed to module for processing. Removing them stops processing
them, if the module supports that.

A file ctl is provided to retrieve status for the spooler. For example, when using print it reports
the printer status.

View uses cmd(3) to run a viewer in the host to view the file. For example, the file is plumbed on
Plan 9 systems and given to on MacOSX systems. Different file formats can be viewed by copying
them into the directory served. Usually, PDF, PostScript, GIF, JPEG, and other various formats are
understood, but this depends on the host system used.

If the file name terminates in .url view reads its contents, a URL, and displays the URL in a web
browser.

Print spools files to an underling printer spooler. The printer name, given as an argument, is
default by default. Removing the file attempts to cancel the print job.

By default, spool speaks Styx using the standard input, for use with mount(1). Flag —m can be used
to ask spool to mount itself at mnt. Options —abc determine the mount flag, as in bind(1). Flag
—d is used to debug the program, and makes it very verbose.

If flag —r is given, any attempt to read a file copied into the spool would launch again the module
used to spool the file. This is appropriate, for example, when viewing files.

SOURCE

/usr/octopus/port/spool.b
/usr/octopus/port/lib/view.b
/usr/octopus/MacOSX/print.b
/usr/octopus/Plan9/print.b

SEE ALSO

BUGS

spooler(2)

May not work on some platforms. Also, the files are kept hanging around for too long, because we
do not know when the module (e.g., the host file viewer) would cease using them.

VOICE(4) Octopus — 2nd edition VOICE(4)

NAME

voice - voice output file system
SYNOPSIS

o/voice[—-abcd][—-mmnt] ...
DESCRIPTION

Voice serves a directory with a speak file that can be used to speak the text written into it. The
text should be clear text, without special punctuation symbols, or the device may be confussed.

It uses the host-dependent module mvoice(2) to actually speak the text.

By default, voice speaks Styx using the standard input, for use with mount(1). Flag —m can be used
to ask voice to mount itself at mnt. Options —abc determine the mount flag, as in bind(1). Flag —d
is used to debug the program, and makes it very verbose.

SOURCE
/usr/octopus/port/voice.b

SEE ALSO
mvoice(2)

INTRO(O) Octopus — 2nd edition INTRO(O)

NAME
intro - introduction to the Octopus File Protocol

DESCRIPTION

The octopus mounts file systems across network links with bad latency. Links exhibiting RTT times
from 50 to 120 milliseconds are common. Such links connect octopus terminals to a central com-
puter or PC. A terminal in the octopus is a machine providing devices and other services to the PC.
The PC provides a central name space to terminals. Both the PC and terminals run file servers to
provide services to be mounted on the other end of the link. The Styx protocol (described in sec-
tion 5) requires too many RPCs to be comfortable for interactive usage across such links, and this
protocol along with ofs(4) and oxport(4) provides a mean to bridge Styx islands to require fewer
RPCs between them. This section describes the protocol, and how it maps to Styx requests and file
system calls.

The Octopus File Protocol, Op, is a network file system protocol used in the octopus for messages
between clients and servers, when bad latency links connect clients to servers. In Op a process
called a client talks to a process called a server. The server is a process that provides one hierar-
chical file system, or file tree that may be accessed by remote client processes. The server
responds to requests from clients to create, remove, put, and get files. The prototypical server is
one that exports a subtree of its own name space. Perhaps, part of the tree corresponds to Styx
servers that synthesize files on demand, perhaps based on information on data structures or by
interfacing to an external device or to the native operating system underneath the octopus, hence
Inferno, at a particular computer.

Usually, two (network) connections are set up between the PC and a terminal in the octopus. In one
of them, the PC is a client (for terminal devices) and the terminal is a server. In the other, the roles
are exchanged. But note that even for the octopus implementation in Inferno, Styx is used within
the central computer, and also within any terminal using Inferno. However, servers in the terminal
speaking to clients in the central computer do so using Op, and the same happens for exporting
the central computer name space to terminal devices.

There may be a single client or multiple clients sharing the same connection to an Op server, but
all of the clients must operate on behalf of the same user.

Op follows the design of 9P (or Styx), including its convention for packaging messages for trans-
mission over the connection. In Op, a client transmits requests (T-messages) to a server, which
subsequently returns replies (R—-messages) to the client. The combined acts of transmitting (receiv-
ing) a request of a particular type, and receiving (transmitting) a reply for that request is called
transaction or an RPC of that type.

But note that there may be more than a single reply message for a given request. In particular,
get(0O) may ask the server to reply with several messages. In this case, the transaction finishes
when all replies have been received (transmitted).

Each message consists of a sequence of bytes. Two-, four-, and eight-byte fields hold unsigned
integers represented in little-endian order (least significant byte first). Data items of larger or vari-
able lengths are represented by a two-byte field specifying a count, n, followed by n bytes of data.
Text strings are represented this way, with the text itself stored as a UTF-8 encoded sequence of
Unicode characters (see utf(6)). Text strings in Op messages are not null-terminated: n counts the
bytes of UTF-8 data, which include no final zero byte. The NUL character is illegal in all text
strings in Op, and is therefore excluded from file names, user names, and so on.

Each Op message begins with a four-byte size field specifying the length in bytes of the complete
message including the four bytes of the size field itself. The next byte is the message type, one of
the constants in the module op(2). The next two bytes are an identifying tag, described below.
The remaining bytes are parameters of different sizes. In the message descriptions, the number of
bytes in a field is given in brackets after the field name. The notation parameter[n] where n is not
a constant represents a variable-length parameter: n[2] followed by n bytes of data forming the
parameter. The notation string[s] (using a literal s character) is shorthand for s[2] followed by s
bytes of UTF-8 text. Messages are transported in byte form to allow for machine independence.

MESSAGES

INTRO(O) Octopus — 2nd edition INTRO(O)

The following messages are defined in the current version of the protocol. Following manual
pages in this section document them. Refer to op(2) for a module providing a Limbo interface.

size[4] Rerror tag[2] ename] s]

size[4] Tattach tag[2] unamels] path[s]
size[4] Rattach tag[2]

size[4] Tf1lush tag(2] oldtag[2]
size[4] Rf1lush tag|2]

size[4] Tput tag(2] pathls] fd[2] mode[2] stat[n] offset[8] count[4] datal count]
size[4] Rput tag[2] fd[2] count[4] qid[13] mtime[4]

size[4] Tget tag(2] path[s] fd[2] mode[2] nmsgs[2] offset[8] count[4]
size[4] Rget tag[2] fd[2] mode[2] stat[n] count[4] data[count]

size[4] Tremove tag[2] pathls]
size[4] Rremove tag[2]

Each T-message has a tag field, chosen and used by the client to identify the message. The reply
to the message will have the same tag. When a Tget request demands more than one reply, all
replies must have the same tag field (and are considered as a single reply, made of multiple mes-
sages). Clients must arrange that no two outstanding messages on the same connection have the
same tag.

The type of an R-message will either be one greater than the type of the corresponding T-message
or Rerror, indicating that the request failed. In the latter case, the ename field contains a string
describing the reason for failure.

Each RPC is considered to be atomic with respect to its execution in the server. There is a limit on
the ammount of data that may be sent in Op in a single request (or reply). No single message may
carry more than MAXDATA bytes in the data field, as defined in op.m (this puts a limit on the
maximum message size, assuming a reasonable maximum size for stat in messages carrying it).
Nevertheless, Tget requests permit multiple messages for each reply, as said in get(O).

The attach request identifies the user to the server. Permission checking and authentication
must take place prior to this transaction. The server must not respond any other request before
accepting an Attach RPC.

Files can be created (and directories) and their contents (and metadata) updated by means of put
messages. They are removed by means of remove requests. File contents may be obtained (and
their metadata) by means of get requests.

The flush request is meant to abort a previous, outstanding, request. It is used to abort ongoing
transactions.

Everything else is similar to 9P or STYX, in particular, file metadata is exactly that used by STYX.

NAMES AND DESCRIPTORS

Most T-messages request that an operation be made for a file. Usually, the file is identified by the
path field of the T-message. The path file contains a string with a file name or path (rooted at the
server’s root directory). The path follows the UNIX (or Inferno or Plan 9) convention for file names.
For example, /a/b means the file b inside the directory a inside the root of the server’s file tree.
Only absolute paths are meaningful for Op. Servers should refuse to accept relative paths. Clients
should never send them inside a request. For example, the name for the root directory of the file
tree in the server must be / (as it could be expected).

However, as said in put(O) and get(O), both Tput and Tget may identify the file using the f£d field,
which contains a small integer that represents a file desriptor to the file. This descriptor is to be
considered a cache of the path mentioned in the path field. When a valid descriptor is sent in a
Tget (or a Tput) the server ignores the path and uses fd to identify the file to be used for the oper-
ation. If the fd is invalid, the file server uses path instead. The special value NOFD (~0) makes this
field void and represents a null descriptor.

File descriptors are numbers chosen by the server. They are allocated upon request. A client may
specify in a Tget or Tput request that more requests of the same type will follow. In that case, the
server must allocate a valid (unique) descriptor and send it back to the client in the R-message.
The client may use the received descriptor for further requests, and the server must use it to

INTRO(O) Octopus — 2nd edition INTRO(O)

operate on the file. When the client issues the last request (or the client the last reply) the descrip-
tor is deallocated an NOFD is sent as fd in the reply. Note that the client must issue one last
request to cause the descriptor to be deallocated. You may refer to get(O) for an example.

When the Op server relies to Styx file servers (like oxport(4) does), it must assign a fid (or a file
descriptor) for each descriptor allocated for Op as described above. This means that a Styx server
may still know when a client reaching the server across an Op link ceases to use the file. However,
note that Op file descriptors are not fids and that a close (or clunk) on a file may cause an Op
descriptor to be closed, even if other clients still have the file open. Note also that descriptors are
unique for read or write access. That is, Op fds are allocated either for Put RPCs or for Get RPCs. A
file being used both to read and to write would use two different Op file descriptors.

SEE ALSO

BUGS

intro(2), styx(2).

Still a child, hence doing nasty things and evolving quickly.

ATTACH(O) Octopus — 2nd edition ATTACH(O)

NAME
attach - messages to establish a connection

SYNOPSIS
size[4] Tattach tag[2] uname[s] path|s]
size[4] Rattach tag[2]

DESCRIPTION

The attach message reports the user responsible for the connection to the file server, and picks
a particular subtree of the server’s file tree. Future transactions are performed on behalf of that
user. In such transactions, the path named / corresponds to the file identified by the path field in
this transaction. Usually, / is used to attach to the entire tree.

This transaction may be used only once, prior to any further communication through the channel.
Servers must refuse to attand any other transaction until receiving this one.

Authentication is outside the protocol, and should determine that uname corresponds indeed to
the user holding that user name.

ENTRY POINTS

An attach transaction will be generated exactly once, while mounting an Op file server.
SEE ALSO

bind(2).

BUGS
The path field is not implemented by the only server implemented that speaks this protocol.

FLUSH(O) Octopus — 2nd edition FLUSH(O)

NAME

flush - flush a previous request

SYNOPSIS

size[4] Tf1ush tag([2] oldtag[2]
size[4] Rf1lush tag|2]

DESCRIPTION

When the response to a request is no longer needed, such as when a user interrupts a process
doing a read(2), (i.e., when a Styx Tf1lush request is generated), a f1ush request is sent to the
server to purge the pending response. The message being flushed is identified by oldtag. The
semantics of flush depends on messages arriving in order, and are exactly the same of Tflush
in Styx (reproduced verbatim below).

The server should answer the f1ush message immediately. If it recognizes oldtag as the tag of a
pending transaction, it should abort any pending response and discard that tag. In either case, it
should respond with an Rflush echoing the tag (not oldtag) of the Tflush message. A
Tflush can never be responded to by an Rerror message.

The server may respond to the pending request before responding to the Tflush. It is possible
for a client to send multiple Tf1ush messages for a particular pending request. Each subsequent
Tflush must contain as oldtag the tag of the pending request (not a previous Tflush). Should
multiple Tflushes be received for a pending request, they must be answered in order. A
Rflush for any of the multiple Tf1lushes implies an answer for all previous ones. Therefore,
should a server receive a request and then multiple flushes for that request, it need respond only
to the last flush.

When the client sends a Tf1lush, it must wait to receive the corresponding Rflush before reus-
ing oldtag for subsequent messages. If a response to the flushed request is received before the
Rflush, the client must honor the response as if it had not been flushed, since the completed
request may signify a state change in the server. For instance, put may have created a file. If no
response is received before the Rf1ush, the flushed transaction is considered to have been can-
celed, and should be treated as though it had never been sent.

Several exceptional conditions are handled correctly by the above specification: sending multiple
flushes for a single tag, flushing after a transaction is completed, flushing a Tf1lush, and flushing
an invalid tag.

ENTRY POINTS

BUGS

A flush transaction will be generated from Tf1lush requests from Styx, resulting from users hit-
ting the Delete key.

The flush request is not properly implemented by ofs(4) and oxport(4).

GET(O)

NAME

Octopus — 2nd edition GET(O)

get - retrieve a file

SYNOPSIS

size[4] Tget tag[2] path[s] fd[2] mode[2] nmsgs[2] offset[8] count[4]
size[4] Rget tag[2] fd[2] mode[2] stat[n] count[4] data[count]

DESCRIPTION

The get message asks the server to retrieve data and/or metadata for the file identified by path
or fd. The former specifies a file name as said in intro(O) and the latter is a small integer that acts
as a file descriptor established by the server for further requests, as explained also in intro(O) and
discussed below.

The field mode must be the result of a bit-or of any of ODATA, OSTAT, and OMORE.

A Tget request with OSTAT set in the mode field asks the server to return file metadata in the
reply, in the stat field, which uses the format used in Styx. In this case, the reply will have the
OSTAT bit set in the mode field as well, to indicate that a stat field is being sent back to the
client. When OSTAT is not set in the request, the reply does not include stat, and therefore
does not have the OSTAT bit set.

A T-get message with the ODATA bit set asks the server to return file data, starting in the file at
position offset, and retrieving a maximum of count, bytes of data per message. In this case, a
reply message includes the actual number of bytes retrieved, reported in count, and the actual
data. If OSTAT was also set in the request, the reply includes both the stat field and the
retrieved data, as said above. All replies include count, even those using just OSTAT as mode.

If the client expects further get requests for the same file, it may set the OMORE bit in mode. For
directories, OMORE is implicit in all requests. In this case, the server allocates a file descriptor as
said in intro(O) and returns its number in the fd field of the reply. Further gets mentioning £d
will refer to the same file. If the connection is lost, or the server restarts, £d may become an
invalid file descriptor. In this case, the server must use path to establish a new file descriptor and
return its number in the f£d field of the reply message, instead of including old one. The special
value NOFD (~0) is used to represent a null (clear) descriptor.

A request without the OMORE bit set clears the descriptor mentioned in the request. It is not an
error to mention an invalid descriptor in the request, e.g., NOFD.

In the reply, the bit OMORE of the mode field is used to indicate is there is more data in the file
following the data already retrived by the RPC. The bit is clear to signal an end of file. A reply car-
rying an end of file indication clears the descriptor as well. In this case, NOFD is reported as the fd
in the reply.

A request must also specify a maximum number of reply messages to be sent in response,
nmsgs. To obtain just one reply it must be set to 1. Value zero means infinite, and is implied for
directories. The server will reply with up to nmsgs (each one with up to count data bytes). Such
messages must have the same tag used in the request. They return data in sequence, starting at
the offset specified by the request, in order.

If both OSTAT and ODATA where set in the request, file metadata will be included only in the first
reply message. The last reply from the server for this transaction will happen when nmsgs reply
messages have been sent, or when there is no more data to retrieve from the file (whatever hap-
pens first). Different replies must be delivered in order to the client, and this requires a transport
protocol (eg. TCP) respecting the order of messages sent.

For directories, and for requests with zero in nmsgs, the entire file will be sent in reply messages,
no matter how many reply messages are necessary. This is necessary for reading directories with-
out race conditions while other clients modify them. The server may buffer a copy of all the direc-
tory entries while sending the sequence of replies.

For directories, an integral number of directory entries (per message) are returning, using the
same format used by STYX (that is, stat fields).

GET(O) Octopus — 2nd edition GET(O)

The number of data bytes requested in a single get transaction must not exceed MAXDATA bytes,
as defined in op . m.

Upon errors, an Rerror reply is sent to the client reporting the cause for the error. Such mes-
sage terminates the transaction (even if multiple replies where asked for). Furthermore, errors
clear the descriptor used in the request. Further requests will use path to set up a new descriptor.

ENTRY POINTS

A get transaction may (note: not will) be generated from Twalk, Tstat, Topen, Tread, and
Tclunk Styx requests. This happens when the user makes calls to open(2), stat(2), and read(2).
In some cases, a single get may serve an entire read-only session for a file. In other cases, sev-
eral ones will be required. The server described in ofs(4) tries to use a single Op descriptor for an
entire Styx session using the same fid. However, if several fids are being used for reading the same
file, a clunk of one of them would release the descriptor and a new one will be established to con-
tinue the session for the other fid. Also, if the file is also written, a different Op descriptor will be
used for Put requests, even though the Styx fid might be the same.

SEE ALSO
intro(O) and put(O).

PUT(O)

NAME

Octopus — 2nd edition PUT(O)

put - update a file

SYNOPSIS

size[4] Tput tag[2] path[s] fd[2] mode[2] stat[n] offset[8] count[4] datal count]
size[4] Rput tag[2] fd[2] count[4] qid[13] mtime[4]

DESCRIPTION

ENTRY

The put message asks the server to update the file identified by either path or fd. See intro(O)
and get(O) for descriptions of these fields. The Put request is similar to get(O) but updates the file
instead of retrieving it.

The field mode must be the result of a bit-or of any of the constants ODATA, OSTAT, OCREATE,
OMORE, and OREMOVEC.

A put with the ODATA bit set updates file data, placing in the file at position offset, the num-
ber, count, of bytes sent in data. When ODATA is not set, the request does not update file data
and no data field must be sent (although a count field must still specify the number, zero, of
bytes being sent).

A put request with the OSTAT bit set in mode updates file metadada, as indicated by the stat
field (which uses the same format used in Styx). A put request without this bit set in the mode
field does not send the stat field through the communication channel, and does not update the
file metadata (other than updating perhaps the modification time and the version as a result of
updating file data).

A put request with the OCREATE bit set in the mode field creates the file if it does not exist, and
truncates it to zero bytes otherwise. Creation requires permission in the directory where the file is
being created. Note that the write offset is still obeyed even when OCREATE is specified, for mes-
sages that also specify ODATA.

To create a directory, the stat field must have the DMDIR bit set in the mode field. In this case,
ODATA is not allowed. Note that for directories the gid must always have its QTDIR bit set in the
type field. See Inferno’s stat(2) or stat(5) for all the details. Op follows the same conventions.

The reply message must return the number of bytes written to the file, which may be zero for
requests without ODATA, and it is considered an error for the user when they are less than the
number requested by the count field of the Tput request.

The reply message also conveyes a gid field and a modification time field back to the client. The
former contains a server-unique identifier in its qid.path field, a version number in the
qid.vers field, and the bit QTDIR set for directories in the gid. type field. This qid corre-
sponds to the file after processing the put transaction. The modification time sent in mtime
reports the last modification time, that is, after the request has been processed. It must match the
mtime field in the file directory entry, as reported by further Get RPCs.

The OMORE bit may be set in a put request to indicate to the server that further Puts might follow
as part of the same file update. In this case, the reply message contains in £d a descriptor, to be
used in further requests resulting from the same update. A request without OMORE releases the fd
and therefore terminates the update being made to the file. See get(O) and intro(O) for a descrip-
tion of how descriptors work.

Clients are responsible for sending at least one put without OMORE to deallocate a Put descriptor
obtained in a previous Put transaction.

The OREMOVEC bit may be set in a request also specifying OMORE to request the server to remove
the file while deallocating the fd. This is useful for temporary files.

Servers must be prepared for handling put requests of up to MAXDATA data bytes, excluding the
space for Op headers (and file metadata).

Upon errors, an Rerror reply is sent to the client reporting the cause for the error. Any error
reply deallocates the £d used by the request, because the update is considered as failed.

POINTS
In general, puts are sent whenever the user causes a file write, a file creation, or a metadata

PUT(O) Octopus — 2nd edition PUT(O)

update operation. The program ofs(4) behaves this way. The exception is that for writes that are
not the first one, and fill a full communications packet, ofs repors no error to the user, to avoid
waiting for unnecessary replies. In general, you may forget about this and assume that the
behaviour is write—through.

Styx servers at the other end of an Op connection may use the Styx Tclunk request to detect
when updates to a file complete. However, note that writes comming from different clients may be
received using the same fd in their requests. That is, the Tclunk would indicate that the file has
been updated, not that one particular client has completed an update.

SEE ALSO
remove(2) and get(O).

REMOVE(O) Octopus — 2nd edition REMOVE(O)

NAME
remove - remove a file

SYNOPSIS
size[4] Tremove tag[2] path]s]
size[4] Rremove tag[2]

DESCRIPTION

The remove message asks the server to remove the file identified by path. See intro(O) for a
description of that field.

The user must have write permission in the directory containing the file. An attempt to remove the
root directory of the server should always fail.

File descriptors used for Put and Get transactions, which point to the removed file, would still be
valid after a Remove transaction. The client should terminate those descriptors besides removing
the file, but that may be done asynchronously with respect to the remove request.

ENTRY POINTS
A remove transaction will be generated from Tremove requests from STYX, resulting from
remove(2) calls.

SEE ALSO
remove(2).

