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Abstract. In this paper, we study algebraic aggregate computatior&eirsor
Networks. The main contribution is the presentation of aetioptimal early-
stopping protocol that computes the average function uthdeharsh Weak Sen-
sor Model. The approach followed saves time and energy layire} the com-
putation on a small network afelegatenodes that can be rebuilt fast in face of
failures. Itis shown that, in a failure-free setting, w.H.this protocol returns the
exact value and terminates@( D+ A) steps, which is also shown to be optimal,
and the overall number of transmissions i€itn(logn + A/ log n +log A)) 2

in expectation. On the other hand, in presence of failutesptotocol computes
the average of the input-values of a subset of nodes thahdspmn the failure
model. More precisely, it is shown that, after the last nalks fand w.h.p., the
protocol takes an extra additive factor ©flog(n/c)/$?) in time and an extra
additive factor ofO(nlog(1/¢)/®?) in the expected number of transmissions,
wheres > 0 is the maximum relative error, ar#lis the conductance of the net-
work of delegates. Other aggregate computation algoritanse easily derived
from this protocol.

1 Introduction

A Sensor Networkis a simplified abstraction of a large monitoring infrasttue,
formed ofsensor nodegor sensors) that create a radio communication network from
scratch. Each sensor node is equiped with communicatiooepsing, and sensing ca-
pabilities. However, given its small size and low-costsiassumed that a sensor node
will operate under strict limitations on energy supply aminputational resources.
Thus, due mainly to the energy constraint, individual sensdes are unreliable. Addi-
tionally, deterministic deployment of sensors is not feesbecause Sensor Networks

! We say that a parameterized evéfyt occurswith high probability or w.h.p.for short, if for
any constany > 0 there exists a valid choice of paramepesuch thatPr{E,} > 1 —n"".
2 Througout this papetpg meandog, unless otherwise stated.



are expected to be used in remote or hostile areas. Randdaydegnt and unreliabil-

ity, together with the limited range of communication andsharesource restrictions,
make solving even basic problems very challenging. Theeefdassical solutions for
basic problems such as establishing the network upon deyglol or achieving reliable
communication among nodes, had to be revised [1, 2, 31].

A natural question is which problems that are useful for rrarimg purposes can be
solved in a Sensor Network. Sensors can collaborate to gsdhe sensed data but, due
to unreliability, a monitoring strategy can not rely on ividual sensors data. Instead,
the network should use aggregated information from grodigsiesor nodes [4, 5, 21].
Popular examples of a relevant aggregate functions areaimpuatation of the maxi-
mum or the average of some variable (e.g.: temperaturegddnsthe nodes in some
area. Nevertheless, any algebraic aggregate functioreafehsed input-values is also
of interest.

The topic of this paper is the efficient computation of aggtegunctions on a
Sensor Network. The efficiency is measured here in two difoasstime and energy.
The energy efficiency is evaluated in terms of number of rassions, as customary
in the Sensor Networks literature. These efficiency metresstrongly influenced by
collisions, especially because no collision detection meisms are available in this
setting. The response of the algorithm to sensor failuredsis an important charac-
teristic of any protocol. Some algorithms have to restapresence of failures, while
others simply compute an aggregated value that may be ordypproximation to the
desired value.

Typically, in Sensor Networks, the aggregated informattooollected by a small
number of distinguished nodes callgidks Given that the information has to be col-
lected to be of any use, a sink node is generally assumed tmilbestfree, and to have
access to more resources than a regular sensor node. Foapptizaitions, it might be
useful to compute aggregations restricted to specific arktde network, and to route
the result of those computations to the sink nodes. Howéaal,of position informa-
tion and limitations on storage space prevents area dalimit and routing. Hence,
for the most restrictive and more general scenario, onlyegaion amon@ll nodes
is feasible. Additionally, the result must be propagatedltmodes in the network to
guarantee that sink nodes receive it.

Algebraic aggregate functions are well defined. Howevaes,ithplementation of
such computations in practice, and specially in the harsts@eNetwork setting, has
to deal with various issues that make even the definition@fpttoblem difficult. First,
the input-values at each node might change over time. Towexgt is necessary to fix
to which time step correspond those input-values. This famtlies that any protocol
has to achieve some form of global synchronization. Sityiléine multi-hop nature of
Sensor Networks makes impossible to completely aggregasetvalues in one single
time step. Hence, arbitrary node failures make the designatbcols challenging. Fur-
thermore, it has been shown [3] that the problem of compwimgggregate function
among all nodes in a network where some nodes join and leaveetfwork arbitrarily
in time is intractable. The only limit on adversarial fadgrthat is customarily used
in the Sensor Networks literature is a guarantee on corvityaimongactive’ nodes

% An activenode at time is a node that it is up and running at tirhe



in each time step. However, for any Sensor Network, it is éagyive a node-failure
schedule that maintains such connectivity but partitibesrtetwork.

Hierarchical aggregate computations where the few comfmutéhe many have
been studied. The most frequent hierarchical approachdsristruct a tree that spans
all nodes in the network [22, 24]. The spanning tree is usecbtlect and gradually
aggregate the input-values at each level of the tree, igthia partial results to the root.
Then, the root computes the overall aggregate result andbdi®s it down the tree.
Due to memory size limitations, it might not be possible tpiement these techniques
unless the degree of each node in the tree is bounded. Andtle@back of this ap-
proach comes from its rigid structure. If an internal nodehaf tree fails during the
computation, the tree is partitioned, and the result, if poted, may not consider the
input-values of an unbounded number of nodes. Furtherntioese nodes may never
obtain the result.

Non-hierarchical computations have also been studied, [21p The approach
of choice is to aggregate the information etery node of the network in anass-
distribution fashion as in load balancing [13, 30] algorithms. In this mamall nodes
arrive at the final result concurrently. A potential shoniing of this approach is the
energy consumption overhead of having all nodes transmgigthd computing. Further-
more, the fact that all nodes communicate with other nodemglall the algorithm
greatly increase collisions with the consequent time aratgncost. As opposed to
their hierarchical counterpart, non-hierarchical apphes usually obtaisomeresult
even in presence of node failures. Thus, non-hierarchpgaieaches are more resilient
to failures. However, it is knowhthat mass-distribution algorithms yield the wrong
result if those failures are arbitrary.

These arguments indicate that both pure approaches, d¢hierak and non-
hierarchical, may have advantages and shortcomings. Bloeithim presented in this
paper benefits from the good properties of both approachesimpining them. The
protocol presented interleaves two algorithms, one fdligwa tree-based approach
and one following a mass-distribution approach. The tragel algorithm will pro-
vide the correct result with low time and energy complexityaifailure-free setting. If
the presence of failures prevents the tree-based computfatim finishing, the mass-
distribution algorithm will compute and disseminate anragpmation of the result.
The time taken by this algorithm is larger, but it is only in@d in presence of failures,
since as soon as the tree-based algorithm finishes, thet@reotithe mass-distribution
algorithm is aborted. Hence, the combined algorithesidy stopping.

In order to reduce collisions and energy consumption, alewethierarchy of nodes
is used. The actual computation is done by a small set of nod#eddelegate nodes,
that collect the sensed input-values from the non-computodes, calledlug nodes.
This structure has several advantages. First, collisiomsealuced since they can only
occur while the delegate nodes collect the sensed inpuesdrom the slug nodes.

4 E.g.: consider the set of nodes partitioned in two connectedponents that are powered off
by the adversary in odd and even steps respectively.

5 “If nodes crash during the computation, then our results dbaarry over” [21]

8 An algorithm is early stopping if it works more efficiently mfailure-free execution than in
an execution with failures.



After that, delegate nodes are able to communicate in astwilifree fashion. Sec-
ond, energy is saved because the slug nodes can idle dugrgpthputation. Third,
the subnetwork of delegate nodes has constant degree, aftoes to easily build a
constant-degree spanning tree. Finally, since the setlefdi nodes is small, there is
a smaller probability that the tree-based algorithm will fsince only failures of del-
egate nodes impact on it). Notice that, in presence of fadluthe two-level structure
may have to be reconstructed; fortunately, this can be dasteand locally.

Model. Sensor nodes are expected to be deployed at random in laagétes over an
area of interest. Hence, we model the reachability of nod#stive Geometric Graph
Modef, noted asyy,., wheren nodes are deployed at randomIii in a unit area,
and an edge between two nodes exists if and only if they amddcat an Euclidean
distance of at most a parametér As customary in the Sensor Networks literature,
we assume that nodes are deployed densely enough to enswakneonnectivity
and sensing coverage. Thus, a straightforward applicatfidi5] gives a bound of
r € 2(y/logn/n) to achieve connectivity w.h.j8.

We assume that the area covered by a sensor node coincitidb@itinge of trans-
mission. Otherwise, the analysis can be easily augmentbdagiensing radius. Given
that we will use a radius of transmission reduced by a coh$sator in some algo-
rithms, we further assume that such density is adjusteddicayly by a constant factor
to still accomplish connectivity and coverage using theioedl radius. This assumption
does not change the asymptotic cost.

Regarding models of sensor node constraints, we use the Bé&aor Model [8],

a harsh and comprehensive model that summarizes the Uiterab sensor node re-
strictions taking the most restrictive choices when pdssib this model, the commu-
nication among neighboring nodes is through broadcast gimaeed channelA node
receives a message if and only if exactly one of its neighbarssmits. There iso
collision detectiormechanism available and the channel is assumed to havevamly t
states: single transmission and silence/collision. Ssmsades havaon-simultaneous
reception and transmissioifime is assumed to be slotted and all nodes have the same
clock frequency, but no global synchronizing mechanisns&med. Nodes are woken

up by an adversary, perhaps at different times. Sensor nodgstore only a constant
number ofO(log n) *° bit words. We assume that sensor nodes can adjust their power
of transmission to only aonstantnumber of levels. Nodes are assumed to have lim-
ited life cycle, i.e., nodes can fail by stopping due to laélpower supply. However
they can restart once their batteries have been reloadetteHee failure model is
crash-recovery. Other restrictions include: short traesion rangex << 1), only one
shared channel of communication and lack of position inftram.

We further assume that the assignment of input-values isradxial. Without loss
of generality, we assume those values to be positive. Weaasome that nodes are

7 A.k.a.Unit Disk Graphwhen the radius is normalized instead of the area.

8 Notice that, in contrast with the popular random geometraph model, we do not restrict
ourselves to a uniform distribution of nodes or a square aefe@ployment.

 We say that a parameterized evéfyt occurswith high probability or w.h.p.for short, if for
any constany > 0 there exists a valid choice of paramepesuch thatPr{E,} > 1 —n"".

9 Througout this papetpg meandog, unless otherwise stated.



assigned a unique ID @b(log n) bits and they know only the total number of nodes
However, the deployment of nodes is not an uncontrolled ix@at. So, information
about the resultant topology can be introduced at a sink aftdedeployment. In this
paper, we assume the presence of one distinguished nodd saik, that does not fail
and knows tight bounds on the diameter of the netwdr&knd the maximum degreg.
Related Work. There is a large body of literature on aggregate computatioeensor
networks that includes both, theoretical and experimemtek. Many of these results
are obtained under models that do not include importanticéens such as, limited
memory size [22], lack of position information [7, 14] andhlted range of transmis-
sion [19, 21]. Others, are purely experimental [16-18, 3329, 33].

A hierarchical approach to aggregate information is presskim [14]. The solution
proposed defines a tree structure that requires node ladafiormation to carry out
the aggregation and it contemplates node failures in laearks. The protocol pre-
sented computes aggregation functions witin log® n) and O(log® n) message and
roundscomplexity respectively. Contention resolution and ott@nmunication issues
are assumed to be resolved by other underlying protocols.

Generic non-hierarchical gossip-baSegrotocols for average computations in ar-
bitrary networks were studied in [4,21]. Results in [4] aregented for all gossip-based
algorithms by characterizing them with a matrix that modhels the algorithm evolves
sharing values in pairs iteratively. It is shown there tlgaten a value > 0, and an
arbitrary network of: nodes, where each nodholds a value/; and all nodes start syn-
chronously; then, with probability at leakt €, in O(log n+1log(n/e) /(1 — Apaz (I +
P)1/2))) rounds each node running a gossip-based algorithm characterized by the
matrix P, computes a value; such thaty", (v, — 7)?/ >, v? < €, wherev is the
average) ., v;/n and . (-) is the second largest eigenvalue. Additionally, an algo-
rithm that takes advantage of the broadcast nature of raweanks is included in [21]
giving similar bounds. In both papers, no details aboutigiolh resolution or routing
are included, and both require.d1) memory size.

Another unstructured protocol for aggregate computatiwas presented in [5].
A mass-distribution algorithm is also used there, althoragdhing on a different ran-
domly chosen local leader in each round to perform suchildigion. It is shown
that, given a value > 0, and a Sensor Network of nodes with underlying graph
G with algebraic connectivity:(G)?, where each nodé holds a valuev; and all
nodes start synchronously; then, with probability at lelast €2/ > (v; — 7)?, in
O(A%log(Y,(vi — )*/€?)/a(G)) rounds each node running the algorithm pre-
sented in [5] computes a valug such thatly, — 7| < e, Vi, where? is the average
>, vi/n. If the deployment topology is known in advance, a paramgtelpability p,,
can be tuned to improve that bound@Alog(>",(v; — 7)?/€?)/pypsa(G)) rounds
wherep, is a probability that depends also on the deployment togolbimally, the
energy metric, used in that paper, is the expected numbeargrnissions, bounded by
O(nA?log((X,(vi —7)?)/€%)/a(@)), again, aside from communication and synchro-
nization overhead. Results. The main contribution of this paper is the presentation

1 1n gossip-based algorithms interactions occur only ingair
12 A characterization of the deployment topology given by theomd smallest eigenvalue of the
Laplacian matrix ofG.



of a time-optimal early-stopping protocol that computesakerage function in Sensor
Networks under the harsh Weak Sensor Model. More preciget/shown here that,
in a failure-free setting, w.h.p., this protocol returns #xact value and terminates in
O(D + A) steps, which is also shown to be optimal, and the overall resrabtrans-
missions is inO(n(logn + A/logn + log A)) in expectation. On the other hand, in
presence of failures, the protocol computes the averadreedafput-values of a subset of
nodes that depends on the failure model. More precisely,shown that, after the last
node fails and w.h.p., the protocol takes an extra additiceof ofO(log(n/c)/P?) in
time and an extra additive factor 6f(n log(1/¢)/®?) in the expected number of trans-
missions, where > 0 is the maximum relative error, ar#lis the conductance [20] of
the network of delegates. (E.g., for the unit square 2(logn/rn).)

Most of the previous works for the aggregation problem inseeNetworks do not
take into account communication issues, make strong aggmmegegarding node re-
sources, or do not give time or energy analyses. Among thagerp that do analyze
efficiency, the bounds presented in [5] include among otheapeters the initial distri-
bution of input-values, which introduces an unboundedbiaict the worst case (recall
that our analysis is a worst case scenario regarding sutttbdison). On the other hand,
the protocol in [14] requires position estimation hardwditee protocols in [4,21] give
the same asymptotic bounds in the number of rounds than mpresence of failures,
but both are not early-stopping, both requirél) memory size, and [21] requires a
clique topology. The analysis of all these protocols do akétcollisions into account.

A time-optimal protocol to compute the maximum function dmneasily derived
from the average protocol. By flooding the delegates netwattkthe maximum input-
value seen so far, the efficiency bounds of the tree algorétterobtained. Regarding
other aggregate functions such as the sum, quantiles ott,ctiely can be computed
using a protocol for average without extra cost as desciibfs 21]. Therefore, in this
paper, the attention is focused in computing the averageeafiput-values.

All'in all, we obtain an energy-efficient algorithm that, evi@ the hardest model
of Sensor Network, and including the construction of the-texgel structure, solves the
problem fast®. Furthermore, by proving a matching lower bound, this tisnegtimal in
absence of failures. To the best of our knowledge, this iisheptimal early-stopping
algorithm for aggregate computations in Sensor Network.

Roadmap. A lower bound on aggregate computations is proved in Se@iddpper
bounds are shown in Section 3. In Section 3.1 the preprowgakjorithms are detailed.
The Aggregate Computation Scheme is presented and each gdases analyzed in
Section 3.2. Finally, the overall efficiency of the protoioshown in Section 3.3. The
details of some proofs as well as the figures are left to therghig for brevity.

2 Lower Bound

In this section we present a lower bound on the time stepsegetedcompute an ag-
gregate function in a Sensor Network. The following defanig will be useful for this

13 1n all our analyses communication costs due to contentisoluéon are included since we do
not assume the existence of any medium access control layer.



purpose. For the sake of brevity, the details of the prodfukas the adversarial assign-
ment of input-values and the topology, is left to the appendi

Definition 1. LetF : R®™ — R, n € N be an algebraic aggregate function overeal
numbers. We say tha is one node sensitivef, for any choice of values; € R”,
there exists another choice of values € R™ such thatv; andv, differ only in one
value, andF(v1) # F(va2).

Definition 2. Given a Sensor Network ef nodes, where each node is assigned an
input-value, we say that a protocol to compute an aggregatetfon over these values
is assignment obliviousdf it is independent of the specific assignment of input-eslu

Theorem 1. Given a Sensor Network afnodes, wheré is the diameter of the net-
work andA the maximum degree, under the restrictions of the Weak Sktmatel, and
independently of randomization and failurég,D + A) time steps are needed in order
to compute a one-node-sensitive algebraic aggregate ifumcising an assignment-
oblivious protocol.

3 Upper Bounds

The computation of aggregate functions is carried out bytogol following a template
calledAggregate Computation Schema key factor of our approach is the inclusion
of a preprocesing phase that defines a delegate-slug Higrancl a schedule of trans-
missions to avoid collisions. Such preprocessing is agymadus and uses time slots
that are not used in the Aggregate Computation Scheme. Herisealso used as a
maintenance algorithm in face of node failures becauseswd®ing it do not collide
with nodes running the main part. For the sake of clarityhhaztrts, preprocessing and
the main procedure are described separately omitting thetsds.

3.1 Preprocessing and Maintenance

The preprocessing/maintenance algorithm includes twegshdue to the memory size
limitations, in the first phase delegate nodes are definethapetach delegate node
is within range of©(1) delegates. Additionally, a second phase establishes sldsed
of transmissions so that each group delegate-slugs can ooivate without collid-
ing with neighboring groups. The first and second prepraeggshases can be imple-
mented as in [27] and [10] respectively. We overview hereesaptessary details.

The first phase of preprocessing is implemented as a ditgdbuaximal indepen-
dent set* (MIS) computation. Members of that set take the role of datlegodes and
the rest become slug nodes. After running this phase usiadias of transmissionr
for some0 < a < 1, no delegate node is within distanaee of another delegate node
and every slug node is within distanae of some delegate node. Furthermore, given

4 An independent sés a set of vertices in a graph such that for any pair of vestitigere is no
edge between them. An independent setdimalif no more vertices can be added to the set
and still be independent.



these geometric properties and the fact that the hexagattigkl is the densest of all
possible plane packings [11], every slug node is withinadisear of less thart del-
egate nodes (see Figure 2(a) in the appendix). This phadgdered when an active
node does not receive transmissions from any delegate fibds, the preprocessing
procedure is by default used to re-build the hierarchy ie fafta delegate node failure,
at the same cost.

The following upper bound on the number of delegate nodedeguroved using
that the hexagonal lattice is the densest of all possibleepfeckings [11], the radius
lower bound to achieve connectivity w.h.p. under uniforstdution of nodes is €
2(4/logn/n) [15], and the assumption of complete coverage.

Remark 1.Given a Sensor Network of nodes deployed as a geometric graph, after
running the first phase of preprocessing as described, grei@(n/logn) delegate
nodes.

After becoming a delegate, a node reserves some time slbésused periodically and
exclusively by itself and its slugs, in the second phase eprocessing. Slave nodes
can be in range of more than one delegate node. Hence, due tadtien-terminal
problent®, there could be collision of reserved slots at a slug noderdier to avoid
that, the value of: in the previous phase is limited tb< « < 1/4, whereas the time-
slots reservation is performed using the maximum ranyféth this modification, when
using a bigger range of transmissign, for 2« < 5 < 1/2, delegate nodes are in range
of other delegate nodes. Nonetheless, given that the heaaltzdtice is the densest of
all possible plane packings [11], a geometric calculatidnegthat there are at most
3[26/av/3]([26/a/3]+1) delegate nodes within distance®f of any delegate node.

After preprocessing, each delegate node has reséned®(1) time slots with a
period ofy € ©(1). These slots are reserved to be used by itself and its slegsstrely
within radiusr. The actual value of is chosen accordingly depending on the specific
protocol.

Among the reserved slots (see Figure 3 in the appendix), the first step is used
by the delegate to transmit a beacon message. This messags thle slugs to iden-
tify which are the incoming reserved slots. In this way, lagachronism is achieved.
Additionally, two steps are reserved for the delegate tornomicate with neighbor-
ing delegates and one step to broadcast the computatioh iesather two slots are
reserved for the communication between slugs and the delegee slot for slugs trans-
missions and one slot for delegate acknowledgement. Imtaimer, collision detection
is implemented. The slugs compete for these slots overuwsriounds ofy slots and
the acknowledgement is used to signal success.

The following lemma establishes formally the efficiency loése phases. Further
details can be found in [8-10] and the references therein.

Lemma 1. (a) For any node running the first phase of preprocessing, for @ny
a < 1, at least one node within distance of i becomes a delegate withi(log® 1)
time steps and no two delegate nodes are within distancef each other w.h.p. The
expected number of transmissions afuring this phase is iD(log n) w.h.p. (b) For

15 The hidden-terminal problefa well-known problem in wireless networks, occurs whenenod
x is in range of nodeg andz, buty andz are not in range of each other.



any nodei running the second phase of preprocessing,iff a delegate node, after
O(log n) time steps reserves a block df € O(1) steps every € O(1) steps for local
use, i.e., this block does not overlap with the block of ahgiodelegate node separated
by a distance at most, w.h.p. During this phase, ifis a delegate node the expected
number of transmissions éfis in O(logn) w.h.p., and ifi is a slug node it does not
transmit.

3.2 The Aggregate Computation Scheme

In the Aggregate Computation Scheme, nodes use only tineerglserved as described
in the previous section. Thus, local synchronism, collisietection among slugs and
their delegates, and non-colliding transmission schedaleong delegates are avail-
able. For the sake of clarity, we focus on describing the mehemitting these details.
We also omit the fact that nodes use only the reserved slotsdosmissions, since
this overhead only introduces a constant factor in the efiiy analysis. Regarding
the range of transmission used, throughout the AggregatgQtation Scheme, a slug
node uses a radiug-, whereas a delegate node uses a ragliusFor clarity of presen-
tation, we describe the Aggregate Computation Scheme asguinat nodes do not fail.
In Section 3.3, we remove this assumption. Also, in ordemimio worst-case bounds,
we assume that all nodes are active.

Before describing the protocol, the following notation &fided. Denote the set of
delegate nodes and the set of slug nodes defined in prepragasd/ andS respec-
tively. For each slug nodg denote the set of its delegates/d$:). For each delegate
nodej, denote the subset of delegate nodes located at one-hp@®iV(;). Each
nodej € M keeps track of its delegate-neighborhag¢;). Furthermore, nodg up-
datesN (j) online by keeping track of the beacon messages of its delegaghbors.
This bookkeeping can be done by storing the IDs of the neighfalelegates because
|N(5)| € ©(1). For each nodé in the network, denote the input-valueas

The varios phases of the Aggregate Computation Scheme danoaély described
as in Algorithm 1 in the appendix. In the following sectiong detail the implementa-
tion of each of these phases.

TRIGGER Phase. By definition of a MIS, the sink node is either a delegate nadi¢ o
is in range of a delegate node. Therefore, tReéGGER phase can be implemented as
follows. If the sink node is not a delegate, using a reseri@dthe sink node transmits
the message to one of its delegates. Upon receiving suchsagessr if the sink node
is a delegate node, delegates flood the network of delegé@tethe& message using only
reserved slots. Each delegate node forwards the messaapichsted, including the 1D
of the node from which it has received the message first. smtlainner, a BFS spanning
tree among the delegate nodes is obtained at the same titenhe¢h@igger signal is
disseminated in preparation for our tree-based algoribume.to the broadcast nature of
a Sensor Network, while passing the message among delegjatgaodes receive also
71. Since only reserved slots are used, the total time takehibphase is iO(D) and
using the Remark 1 the total number of transmissions in th&se is inO(n/ logn).
Hence,r, is tuned to ensure that active nodes receive this messagenertd start
the COLLECTION phase. For nodes becoming active late, upon becoming actides
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run the preprocessing phase, which includes an initialimgiperiod. Nodes in this
period that hear that the computation has already startetbtipin the computation,
although they do complete the preprocessing phase in @marfor future queries.
The following lemma establishes formally the bounds of pfiase.

Lemma 2. After the sink node starts disseminating the trigger messaly delegate
nodes have received the message withii») steps and the overall number of trans-
missions iD(n/ logn).

COLLECTION Phase. At time 71, nodes start running theOLLECTION phase using
the input-values at that time step. Before describing th@lémentation of this phase,
we explain the communication primitive used. Nodes comicaitgiin this phase using
the following well-known procedure. In each round, nodesase uniformly at ran-
dom a slot within a window of slots to transmit its messagartitg with a window of
sizec; A, the window size is repeatedly halved in each round dowsn tog n, where
c1 > 0 andcy > 0 are constants chosen appropriately. After that, a final doofn
c3log® n steps where nodes repeatedly transmit with probahilifylog . is included.
Again,c3 > 0 andey > 0 are constants appropriately chosen according with the spe-
cific application. The intuition of the algorithm is the foling. After the window size
is in the same order of the number of neighboring nodes, thesage of a constant
fraction of slugs is received by the delegate in each routdpwSince the reception
of those messages is acknowledged by the delegate, theseales do not transmit
in future rounds. The final round is included so that transmiss are successful when
only o(logn) messages remain. We refer to this protocol asvifrelowed protocol
The COLLECTION phase is specified in Algorithm 2 in the appendix. Each slugeno
i € S begins this phase choosing one of its delegates to paspitswalue. The reason
to do that is to ensure that each input-value is used exantlg @ the computation.
Using the windowed protocol, each slug node transmits a ages® the delegate cho-
sen. The message transmitted containand the ID of the delegate chosen. Given the
availability of delegate acknowledgements, a delegateives exactly one input-value
per slug node.

A delegate node running tleoLLECTION phase does the following. Each delegate
node maintains two magnitudes that we calinandweight For each nodg € M, we
denote the sum and weight as andw; respectively. Each delegate noflaitializes
the sumo; = v; and the weightv; = 1. Upon receiving (and acknowledging) the
transmission of one of its slug nodésthe delegate adds the input-value received to
the sum and increases the weight. Notice that sum and weddirts are polynomially
upper bounded so memory restrictions are not violated. dHevfing lemma estab-
lishes formally the correctness and efficiency of tw®LLECTION phase. The proof
uses well-known techniques and the details are left to theragiix for brevity.

Lemma 3. Let V' be the set ofi nodes in a Sensor Network; be the input-value of
nodei € V, and letM be the set of delegate nodes. There exists@ O(A + log? n)
such that, after running theoLLECTION phase with that, the following holds}
has been partitioned ip/| disjoint subset§ V1, Va, ..., V|5 } and each nodg € M
holds two values; andw; such thatyk € {1,...,|M|};Vje M :j € Vi = (05 =
Y iev, Vi Awj = |[Vk|), w.h.p. The time taken by the algorithm isG{A + log® n).
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The number of transmissions of delegate nodes during tlasepis inO(n(A/ logn +
logn)), and the expected number of transmissions of slug nodesglilnis phase is in
O(n(logn + log A)).

COMPUTATION and DISSEMINATION Phases.Upon completion of the&OLLECTION
phase, slug nodes standby waiting for the delegates to denipthe COMPUTATION
phase and send back to them the result indfesEMINATION phase. We describe the
two approaches used in the following phases separatelylddtyc Although, as ex-
plained before, they are run simultaneously. Two diffetéane slots to communicate
among delegates were reserved for this purpose. If thet fghke tree-based computa-
tion is obtained the mass-distribution-based computasiarst stopped. Otherwise, the
mass-distribution algorithm continues until some resuteturned. Also for the sake of
clarity, we describe both approaches assuming that nodexctivated early enough to
receive the trigger and stay active long enough to recewedbult of the computation.
In Section 3.3 we specify the overall efficiency including ttase where this is not true.
Tree-based Algorithm. The tree-based algorithm is well known and simple to describ
Once arooted tree is built, it includes three steps: thetmadcasts a query to all nodes
in the tree, then nodes convergecast the aggregated iafugssto the root and finally
the root computes the function and broadcasts back thet tesall nodes in the tree.
The details follow.

While broadcasting the time slet of the input-values that have to be used in the
computation, in th@RIGGERphase, a BFS rooted tree of constant degree is built among
delegate nodes by making each delegate node keep track tofétsieighbors. The
root of such a tree is either the sink node or a delegate nodeeatop of the sink
node. Without loss of generality we assume it is the sink nétle;, all nodes run the
COLLECTION phase using the windowed protocol as described. Then, attim 7,
theCcOMPUTATION phase starts. In this phase, each delegate node aggrdumaitestit-
values by passing to its parent in the tree its sum and wemgregated with the sum
and weight of its children. Thus, the root of the tree recethe total sum and weight of
the whole network and computes the average. Finally, intR6EMINATION phase, the
root node floods the network of delegates with the result kvividurn is disseminated
to the slug nodes by each delegate node upon receiving ienGhat broadcast and
convergecast is run in reserved slots the time taken by thévl@ phases is jus?(D)
and by Remark 1 the total number of transmissions i©{n/logn). The following
lemma formalizes these bounds.

Lemma 4. Let M be the set of delegate nodes andandw; be the sum and weight
of nodei € M respectively obtained after running tleoLLECTION phase as de-
scribed. After running th€ OMPUTATION and DISSEMINATION phases implemented
with a tree-based algorithm as described, witliriD) steps all nodes have received
the valued ,_,, oi/ >, s wi and the overall number of transmissions in both phases
isinO(n/logn).

Mass-distribution Algorithm. In the mass-distribution protocol used in this pa-
per, after aggregating input-values in tl@oLLECTION phase, delegate nodes
share a fraction with each delegate neighbor. More pregiselx;ca{|N(i)|} <
3[26/av3]([26/aV/3] + 1) as shown in Section 3. So, fi¥ = 1 +
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3[26/av/3]([26/a/3] +1). In each round, each delegate node passes a fraotivn
of its sum and weight to each neighboring delegate node agpiskihe rest for itself.
The delegate nodes update their sum and weight values vétkhares received and
repeat. After enough number of iterations, all sum and weiglues converge to a pair
of values whose ratio is the average sought. We call thisopodStingy Share(see
Algorithm 3 in the appendix for details).

Given that the shares are the same for all neighbors aséinown, delegate nodes
do not need to specify the destination and simply transneitsitim and weight. Af-
ter enough number of rounds, each delegate riadan compute the average with the
accuracy desired as the ratig/w;. Furthermore, th@ISSEMINATION phase is inte-
grated in this phase by default given that, although sums\amights are transmitted to
neighboring delegate nodes, all neighboring nodes retledge transmissions because
they are produced in reserved slots. Notice that StingyeSthaes not violate the mem-
ory restrictions since only a constant number of valueseeeived in each round and
the sum and weight values are still polynomially upper bathddf course, precision
limitations due to real number computations are still inest

We analyze now Stingy Share and prove its correctieGsven that the fraction of
o andw shared in Stingy Share is round independent, the algorithmie characterized
by a matrix of shares as follows. For the sake of clarity, withloss of generality

assume that delegate nodes IDs ardin. .., |[M|}. Leto® = (o\" ...crff&‘) and

w® = (w?) e wl(]t&‘) be the vector$ of sums and weights of all delegate nodes after
roundt. Let P = (p;;) be a matrix inRI™1>IMl such thatp;; = 1/25 if j € N(i),

pi; = 1 —|N(i)|/28 if j = 4, andp;; = 0 otherwise. Theng® = o P* and
w® = w( Pt are the vectors of sums and weights in rosmelspectively. Given that
P is stochastic, this characterization can be also seen agkoMehainX = {X;}
where the state spaceli$ and the transition matrix i#.

Mass-distribution algorithms only converge to the reddéince, a metric of such an
approximation has to be defined. In this paper, we usedlagive pointwise distange
which is defined asnax; |v; — 7|/7. The following lemma, showing the correctness
of Stingy Share, can be proved using the fundamental theofdiarkov chains [28].
The details are left to the appendix for brevity.

Lemma 5. (Correctness) Let” be the set ofi nodes in a Sensor Network; be the
input-value of nodé € V, andv = }_,_,, v;/n their average. LetM be the set of
delegate nodes defined in the preprocessing of the AggrEgaitgutation Scheme. Let

al(t) and wft) be the sum and weight of delegate néde A obtainedt rounds after
thecOLLECTION phase of the Aggregate Computation Scheme. Then, implieigérd
COMPUTATION phase using Stingy Share, there exists & 0 such that, for alt > 73,

|7 — a§t>/w§f>|/v < g, forall i € M and for a given parameter > 0.

8 Were precision requirements more relevant than memoryigtishs, nodes could simply
avoid dividing by2¢ in each round, compute the result as a rational number, anditi
sion could then be performed by the powerful sink nodes only.

" We assume familiarity with elementary Markov chains andcspé graph theories. For an
introduction refer to [6, 12].

18 Throughout the paper, we use row vectors for clarity.



13

To analyze the efficiency of Stingy Share, we leverage thiebaady of research work on
bounding the rate of convergence of Markov chains to a statjodistribution, i.e., the
mixing time For Markov chains with underlying graphs with geometriggerties, there
is a natural notion useful to bound, calledconductanc§20]. Consider the geometric
graphGy; = {M, Ep}, underlying the Markov chaiiX, where{i, j} € E,, if and
only if ¢ andj are located within an Euclidean distance of at mo&et theweightof an
edge{:, j } in the underlying grapty s bew;; = p;;m = p;;m;. Then, the conductance
of X with underlying graptG; is #(Gy,) £ min{ZieC,jg{C wij/ Y ec i}, Where
the minimization is over all subsets ¢ M such that) < Ziec m; < 1/2. Then,
the conductance can be seen as the minimum, taken over tallsstaspaces, of the
conditional probability that the chain in stationarity neswout of a state subspace given
that it is there. We bound the mixing time using the condusaas in [32]. (For the
sake of brevity, we leave the details to the appendix.) THeviing lemma, which can
be derived from Lemma 7 and Remark 1, establishes formadlefficiency of the last
two phases implemented as a mass-distribution algorithm.

Lemma 6. Let M be the set of delegate nodes andandw; be the sum and weight of
nodei € M respectively obtained after running tle®LLECTION phase as described.
After running theCcOMPUTATION and DISSEMINATION phases implemented with a
mass-distribution algorithm as described, witlidlog(n/c)/®?) steps all nodes have
received the valug_,_,, o;/ >, wi With maximum relative error and the overall
number of transmissions in both phases i®im log(1/¢)/®?).

3.3 Overall Efficiency of the Average Protocol

Theorem 2. Given a Sensor Network af nodes, whered is a tight upper bound on
the maximum number of neighbors of any node Britie diameter of the network. Let
71 be the time step at which the average of the input-valuesrafosenodes has to be
computed. Under the restrictions of the Weak Sensor Magelfdllowing holds. (a)
There exist constants; > 0 and k2 > 0 such that, if the set of active nodes does
not change in the interval;, — k1 (D + log® n), 71 + k2(D + A)] then, the Aggregate
Computation Scheme solves the Average Problem wiift + D) time steps w.h.p.
and the expected number of transmissions 9 (n(logn + A/ logn + log A)) w.h.p.
(b) Otherwise, the Aggregate Computation Scheme solveAuttimge Problem over
a subset of nodes, that depends on the failure model, withinmax relative errore
over the input-values of the nodes in that subset, withjm\ + D + log(n/c)/P?)
time steps, after the last failure, w.h.p., and the expeotedber of transmissions is in
O(n(logn + A/logn + log A + log(1/¢)/®?)), after the last failure, w.h.p.

Proof. (a) By Lemmas 1 and 2, the total time of preprocessing andTRESGER
phase is inO(D + log?n) w.h.p. Therefore, for large enough, nodes active in
[11 — k1(D + log®n), 1 + ka(D + A)] receive the trigger message on time to par-
ticipate in the protocol w.h.p. By Lemmas 3, 4, and given thaand A can not be in
o(log® n) simultaneously, these nodes completectiog LECTION, COMPUTATION and
DISSEMINATION phases irO(D + A) steps. Thus, the claimed time follows. On the
other hand, the claimed number of transmissions is a dimttequence of Lemmas 1,
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2, 3, 4, and Remark Xb) The running time is a direct consequence of Lemmas 1, 2,
3 and 6. The claimed number of transmissions follows from irew 1, 2, 3, 6, and
Remark 1.

It is important to notice that both algorithms, tree-based mass-distribution based,
compute the correct result everaif slug nodes crash, as long as this event happens af-
ter thecoLLECTION phase. Of course, non-active slug nodes will not receiveabait,
but the sink node is either a delegate node or a neighbor ofegate node. There-
fore, the sink node still receives the result. The resietathis event is not a minor
advantage, given that, by Remark 1, there are at [@&s{1 — 1/logn)) slug nodes
in the network. Additionally, the mass-distribution alglbom continue working even in
presence of delegate failures, returning some result whalggity is bounded as long
as the number of nodes failing is bounded and the distributfenput-values is known.
Furthermore, this algorithm can be easily improved to stlirn the correct result in
presence of a constant number of delegate node failuresimaee-hop neighborhood
without extra cost. To see how, consider the following madiion roughly described.
In each round of theoMPUTATION phase, each delegate node transmits together with
its sum and weight, the number of its delegate neighbors,Téech neighboring dele-
gate node can include the effect of the mass lost by the delegashed in its compu-
tation proportionally.

In order to gain intuition on the significance of the bound&oted for the mass-
distribution algorithm, it is useful to bound the conduaamising the geometry of the
deployment area. For example, It can be proved that for anyanea of rectangular
shape, with smaller sidg the conductance is bounded Ry g log n/rn). For the sake
of brevity, we leave the details to the appendix.
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Appendix

A

Proof of Theorem 1

Proof. The lower bound is shown exploiting the adversarial assigmtrof input-values,
the adversarial wake-up and the topology. Consider a Séetwrork ofn nodes with
maximum degree\ and diameteiD, where some nodg is located at2(D) hops of
any node in a subseéX, | X| € 2(A) of nodes that form a clique. Such a Sétexists
as proved in the following claim.

Claim. Given a geometric graph of nodes and maximum degrek, there exists a
subset of nodeS that form a clique such th&f| € 2(A).

Proof. Let = be a node of degred. Then, there arel + 1 nodes located in a circle
of radiusr centered on, call this circleC. In order to prove the claim, it is enough to
show that there is a circle of radiug2 insideC that contains at leas?(A) nodes. For

the sake of contradiction, assume there is no such circlen&tant number of circles of
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radiusr/2 are enough to cover completely By our assumption, each of these circles
containso(A) of the nodes irC. But then, the total number of nodesdhis in o(A)
which is a contradiction.

For the sake of contradiction, assume first that there earstsssignment-oblivious
protocol P that computes a one-node-sensitive functiorover any values assigned
to nodes in this network in time( D). Consider an assignment of values such that
a valuer, (z) is assigned to some nodec X andF(v) is the value returned to
y by P in o(D) steps. SinceF is sensitive, there exists an assignmentsuch that
vi(z) # vo(x) that makesF(vq1) # F(v2). Consider the execution @ under this
new assignments,. It is not possible that a value different th&ifv,) is returned tay
by P in o(D) steps under this new assignment becauardy are separated b§2(D)
hops, which is a contradiction.

Similarly, for the sake of contradiction, assume now thatéfexists an assignment-
oblivious protocolP that computes a one-node-sensitive functirover any values
assigned to nodes in this network in timA). In order to computé”, all nodes have
to transmit at least oné& Consider a node € X that is scheduled to transmit last in
X by P?°. Consider now an assignment of valugssuch that a value, (z) is assigned
to x andF (1) is the value returned tpby P in o(A) steps. SinceF is sensitive, there
exists an assignment, such that, (x) # v»(z) that makesF (v,) # F(v2). Consider
the execution of? under this new assignment. It is not possible that a value different
thanF(v1) is returned tay by P in o(A) steps under this new assignment becatise
the last node to transmit in a clique @f A) nodes, which is also a contradiction.

B Proof of Lemma 3

Proof. Using well-known techniques as in [10], it can be proved tladter running
the windowed protocol, each delegate node has receivedplig-value of all its slugs
w.h.p., the time taken by the protocol is@ A + log® n) steps, the number of trans-
missions of a delegate node during the windowed protocai (A + log® n), and
the expected number of transmissions of a slug noded¥log n + log A). Thus, the
claim follows from these facts, by definition of the algonittand using Remark 1.

C Mixing-time of Stingy Share

Given thatX is ergodic, the eigenvalues farel = Ao > Ay > - > Ajpy—1 > —1.

It is known that the mixing time is related to tlspectral gapof the transition matrix
1= Anaz, Whereh,,q. = max{Ai, |\jar—1]}. We precise that relation as in [32]. First,
in order to measure the deviation from stationarity, defieedlative pointwise distance

aftert rounds over a non-empty subgeiC M asAy (t) = maXi7jeU{|p§;) —m;|/m;}

19 Eventually the sink node might only receive values. To djard this node does not change
the analysis.

20t P is randomized, take to be a node that has a positive probability of transmittheglast
in X.
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Then, Ay (t) is the largest relative difference betwegf) and~ at any statg € U,
maximized over all possible initial statés= U. Given that for alli, j € M, p;;m; =
pji;, the Markov chairX is time-reversibleThe following proposition establishes the
relation between the spectral gap and mixing time.

Proposition 1. ( [32, Prop. 3.1]) LetP be the transition matrix of an ergodic time-
reversible Markov chaing its stationary distribution and\; : 0 < i < |M|— 1} its
eigenvalues, withy = 1. Then, for any non-empty subgétC A and allt > 0, the
relative pointwise distancé\y (¢) satisfiesAy (1) < N, ./ minjcy 7;, whereh,,q, =
max{|\;| : 1 <i < |M|—1}.

The eigenvalué\ |, is relevant only if it is negative. However, given that €
M, p;; > 1/2 by definition of Stingy Share, it holds that,; _; > 0 [32]. Therefore,
Amaz = A1. Therefore, in order to obtain an asymptotic bound on thangikime, it
is enough to bound;. The following result [32], bounds; using the conductance as
defined in Section 3.2.

@2
M- (1)

Lemma 7. (Mixing time) LetV be the set ofi nodes in a Sensor Network; be the
input-value of nodeé € V, andv = ) ., v;/n their average. Consider the Aggregate
Computation Scheme to solve the Average Problem as dedctieéM be the set
of delegate nodes defined in the preprocessing phasejgﬂ)eland wio) be the sum
and weight of delegate nodec M obtained after thecOLLECTION phase. Then,
implementing thecOMPUTATION phase using Stingy Share as described, after
O((In(1+42/¢)+1In|M])/®?*) rounds the following condition is satisfied. For alb 73,

0" Jw® — 7| /7 < £, for all i € M and for a given parameter > 0.

Proof. As shown in Lemma 5, in order to prove this claim, giverean 0, it is enough
to find a timers > 0 such that, for alk > 73, maXieMﬂﬂz('t) —m|/mi} < €', where
e’ =¢/(2+ ¢). From Proposition 1 and using the fact that the stationastyitiution is
uniform, we havenaxieM{mEt) —m;|/mi} < M |M|. Hence, we look for the minimum
t > 0suchthat\{|M| < e/(2+¢). Usingthatl —z < e %0 < z < 1[26,§2.68],
we want

| M| £
etl=X) = 24 ¢
1 2
t> In{1+ - +ln|M| (2)
1—/\1 g

Replacing Equation 1, the claim follows.

D Proof of Lemma 5

Proof. The Markov chairX characterizing Stingy Share is finite and irreducible. Addi
tionally, given that the underlying graph has self-loops, ¢.c.d. of all closed walks is
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1. Therefore X is aperiodic. Then, by the fundamental theorem of Markoweh8],
X is ergodic and it has a unique stationary distribution. &iRcis doubly stochastic,
the systemr = 7 P admits the solutiomr = (1/|M]...1/|M]) which, by the afore-
mentioned theorem, is unique. Lgt*) be the distribution at rountl Given that the
chain converges to the stationary distribution, we know,tf@ eachs’ > 0, there
is aT > 0 such that, for alit > 7, |u§t) —m|/m < €, foralli € M. Then,
for any initial distributionx(®) and for allt > 7 it holds that,(1 — ¢')/|M| <
Yiem ul(.o) (P');; < (1+¢)/|M]|, forall j € M. But then, it must also hold that
(1-¢)/|M| < (Pt);; < (1+¢€")/|M|, foralli,j € M. To see why, assume for the
sake of contradiction that there is a pdirj’ € M such tha{ P*); ;; < (1 —¢’)/|M]
or (P;; > (1 + €')/|M|. Then, it would be enough to saé,o) = 1 and the
rest of the components t to make the previous assertion false. For any delegate

. 0 0
nodei € M, o /ol = (@O P);/ (@O P); = 5,01 (P');i/ 5, " (P
Then, fczr)allt > 7 (1 (—) )Y, a§0)/(1 +( }E/) >, w(J(_f;) < Ul(t>/w1(t) < 1+

0 0 . 0 0 —

e)> 0,7 /(1—¢€) >, w; . Giventhaty . 0,7/ > w;” =7, we have that > 7,

71— 2¢'/(1 + ') < offwt < P(L+2'/(1 = ). Thus,|oy" /i —71/7 <
2¢' /(1 — £’) and the claim follows making = ¢/(2 + ¢).

E Bounding the Conductance

Consider the geometric graghiy, = {M, Ea}, underlying the Markov chaiX,
where{i,j} € E) if and only if i andj are located within an Euclidean distance
of at mostr. In order to further bound the mixing time, it is useful to Induthe con-
ductance using the geometric propertiesgf. Although the distribution of delegate
nodes in the plane is close to uniforéi,, is not a regular graph and bounding the con-
ductance precisely is difficult. Given that we are inter@@teasymptotic bounds on the
time taken by the&eOMPUTATION phase, it is enough to show an asymptotic bound on
the conductance. The magnitude of the conductance departids bottlenecks present
in the network. Given that the distribution of delegate rederoughly uniform, the
shape of the area where nodes are deployed governs the gregdmottlenecks.

In order to gain intuition about the rate of convergence, mayze the conductance
of the network when nodes are deployed in a rectangular disraaller sidey.

Lemma 8. Given a unit rectangular area of deployment with minimune gidhe con-
ductance of#y; = {M, Ep}isin £2(glogn/rn).

Proof. Recall that the conductance of a Markov ch¥irwith underlying graph= s
is @(G}\{) £ min{ziecjjgc wij/Ziec 7T1'}. Wherewij = PijT; = PjiT; is the
weightof an edge{4, j} in G and the minimization is over all subsetsc M such
that0 < >, .~ m < 1/2. Given that the stationary distribution is unifori,, . m; =
|C|/|M|.Hencey ;. m; is maximized whenC'| is maximized up t¢)/ | /2. However,
> icc,jec wi; depends on hoW' is chosen so, a more careful analysis is needed.
Consider a complete cover of the area with circles of radiuas in Figure 1. Let
£ be the number of circles and 1€} be the set of delegate nodes covered by ciicle
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Fig. 1. lllustration of Lemma 8.

Under complete coverage assumptions, by definition of theimma independent set,
we know that for every circlé it must hold thatC; # ). Furthermore, given a pair of
overlapping circles, j, it must hold that”; \ C; # 0 andC; \ C; # 0. Then, it is
possible to define sets of delegate nod¢sC C,...,C; € Cy so thatJ, C; = M
andvi,j : C; N C} = 0.

Given the graphGy, = {M, Ey}, consider a subgrapf’ = {V’, E’'} where
Vi=MandE = {{i,j}{i,j} e EMNi € CeNjECsAN(t=5sVVkeCs:(k#

Jj = {i,k} ¢ E’))}. In words, all edges connecting delegate nodes within theesa
subset plus one edge between each pair of sets of overlapipites. Using the same
algorithm on this subgraph, the Markov chain charactegitistill is finite, irreducible
and aperiodic so, it is ergodic, time-reversible and it ha@foum stationary distribution
m = (1/|M]|...1/|M]|). Thereforep . . m; = [C|/|M].

Consider now the inductive process of adding delegate nmd€sone subset at a
time. Each new subset contributes to incre@3eby at least one. On the other hand,
there is always a way of adding an overlapping circle so thatiumber of edges of
G’ crossing the boundary af' does not increase by more than one. Therefore, the
minimum conductance fa&’ is achieved whei _, _ 7; is big.

We consider then only subsets where the boundary is a single.cAmong all
subsets of size close {d/|/2, we want to find the one with the minimum number of
edges crossing the boundary, i.e., the boundary of mininemgth. Finding the precise
boundary among circles that maki€s = |M|/2 may be impossible because circles
have different number of nodes. However, we look for an aggtigpbound, and the
number of nodes in any circle is also bounded from above bynataat. Therefore, an
approximate boundary is enough. Such approximation iseq parallel to the side of
lengthg, that halves the area. Under complete coverage assumyttiens are at least
g/ar circles touching that line, partially or completely in ondesof it. Each of these
circles has at least 1 edge crossing the boundary. Thustdeatimber of edges cross-
ing such a boundary is at leagtar. Therefore) ;.. .o wij = > icc jec PijTi €
£2(g/r|M]). On the other handy ,_~ m; € ©(1) thus, the conductance ¢f' is also
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£2(g/r|M]). Adding edges ta7’ can not decrease the conductance so this is also a
lower bound forG . As observed beforé) | € O(n/logn), thus the claim follows.

F Figures

Algorithm 1: The Aggregate Computation Scheme.is the time slot to measure the
input-values,D is the diameter of the network andlthe maximum degree.

TRIGGER The sink node broadcasts:, D, A).

CoLLECTION: Delegate nodes aggregate slugs input.

CompPUTATION: Delegate nodes compute the aggregate function.

DISSEMINATION: Delegate nodes distribute the resuilt.

Algorithm 2: ThecoLLECTIONphase for the Average Problem.
For slug nodei € S:
Choose arbitrarily a delegate noglee M (i).
Using the windowed protocol, transmit message, v;) with radiusar.

For delegate nodg € M:
Setdj — Vj.
Setw]' «— 1.
for = stepsdo
if a messagéi, j, v;) is receivedthen
Setaj — 0 + V.
Seth‘ —wj + 1.

Algorithm 3: ThecoMPUTATION phase for the Average Problem: Stingy Share.
For delegate node € M:
for k=1tor3 do
Transmit(z, k, o;, w; ).
Receive(j, k, 0, w;) forall j € N(q).
Seto; — (1 — [N(i)[/26)0i + 3 e Ny 03 /20
Setw; «— (1 —|N(4)|/20)w; + ZjeN(i) wj/20.
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Fig. 2. lllustration of maximum degree.
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(1) Beacon message

Communication with delegate neighbors
Broadcast result

Slugs transmission

Delegate acknowledgement
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Fig. 3. lllustration of time-slots usage.



