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Abstract. In this paper, we study algebraic aggregate computations inSensor
Networks. The main contribution is the presentation of a time-optimal early-
stopping protocol that computes the average function underthe harsh Weak Sen-
sor Model. The approach followed saves time and energy by relaying the com-
putation on a small network ofdelegatenodes that can be rebuilt fast in face of
failures. It is shown that, in a failure-free setting, w.h.p. 1, this protocol returns the
exact value and terminates inO(D+∆) steps, which is also shown to be optimal,
and the overall number of transmissions is inO(n(log n + ∆/ log n + log ∆)) 2

in expectation. On the other hand, in presence of failures, the protocol computes
the average of the input-values of a subset of nodes that depends on the failure
model. More precisely, it is shown that, after the last node fails and w.h.p., the
protocol takes an extra additive factor ofO(log(n/ε)/Φ2) in time and an extra
additive factor ofO(n log(1/ε)/Φ2) in the expected number of transmissions,
whereε > 0 is the maximum relative error, andΦ is the conductance of the net-
work of delegates. Other aggregate computation algorithmscan be easily derived
from this protocol.

1 Introduction

A Sensor Network is a simplified abstraction of a large monitoring infrastructure,
formed ofsensor nodes(or sensors) that create a radio communication network from
scratch. Each sensor node is equiped with communication, processing, and sensing ca-
pabilities. However, given its small size and low-cost, it is assumed that a sensor node
will operate under strict limitations on energy supply and computational resources.
Thus, due mainly to the energy constraint, individual sensor nodes are unreliable. Addi-
tionally, deterministic deployment of sensors is not feasible because Sensor Networks

1 We say that a parameterized eventEp occurswith high probability, or w.h.p.for short, if for
any constantγ > 0 there exists a valid choice of parameterp such thatPr{Ep} ≥ 1− n−γ .

2 Througout this paper,log meanslog2 unless otherwise stated.
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are expected to be used in remote or hostile areas. Random deployment and unreliabil-
ity, together with the limited range of communication and harsh resource restrictions,
make solving even basic problems very challenging. Therefore, classical solutions for
basic problems such as establishing the network upon deployment, or achieving reliable
communication among nodes, had to be revised [1,2,31].

A natural question is which problems that are useful for monitoring purposes can be
solved in a Sensor Network. Sensors can collaborate to process the sensed data but, due
to unreliability, a monitoring strategy can not rely on individual sensors data. Instead,
the network should use aggregated information from groups of sensor nodes [4, 5, 21].
Popular examples of a relevant aggregate functions are the computation of the maxi-
mum or the average of some variable (e.g.: temperature) sensed by the nodes in some
area. Nevertheless, any algebraic aggregate function of the sensed input-values is also
of interest.

The topic of this paper is the efficient computation of aggregate functions on a
Sensor Network. The efficiency is measured here in two dimensions: time and energy.
The energy efficiency is evaluated in terms of number of transmissions, as customary
in the Sensor Networks literature. These efficiency metricsare strongly influenced by
collisions, especially because no collision detection mechanisms are available in this
setting. The response of the algorithm to sensor failures isalso an important charac-
teristic of any protocol. Some algorithms have to restart inpresence of failures, while
others simply compute an aggregated value that may be only anapproximation to the
desired value.

Typically, in Sensor Networks, the aggregated informationis collected by a small
number of distinguished nodes calledsinks. Given that the information has to be col-
lected to be of any use, a sink node is generally assumed to be failure-free, and to have
access to more resources than a regular sensor node. For someapplications, it might be
useful to compute aggregations restricted to specific areasof the network, and to route
the result of those computations to the sink nodes. However,lack of position informa-
tion and limitations on storage space prevents area delimitation and routing. Hence,
for the most restrictive and more general scenario, only aggregation amongall nodes
is feasible. Additionally, the result must be propagated toall nodes in the network to
guarantee that sink nodes receive it.

Algebraic aggregate functions are well defined. However, the implementation of
such computations in practice, and specially in the harsh Sensor Network setting, has
to deal with various issues that make even the definition of the problem difficult. First,
the input-values at each node might change over time. Therefore, it is necessary to fix
to which time step correspond those input-values. This fact, implies that any protocol
has to achieve some form of global synchronization. Similarly, the multi-hop nature of
Sensor Networks makes impossible to completely aggregate these values in one single
time step. Hence, arbitrary node failures make the design ofprotocols challenging. Fur-
thermore, it has been shown [3] that the problem of computingan aggregate function
among all nodes in a network where some nodes join and leave the network arbitrarily
in time is intractable. The only limit on adversarial failures that is customarily used
in the Sensor Networks literature is a guarantee on connectivity amongactive3 nodes

3 An activenode at timet is a node that it is up and running at timet.
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in each time step. However, for any Sensor Network, it is easyto give a node-failure
schedule that maintains such connectivity but partitions the network4.

Hierarchical aggregate computations where the few computefor the many have
been studied. The most frequent hierarchical approach is toconstruct a tree that spans
all nodes in the network [22, 24]. The spanning tree is used tocollect and gradually
aggregate the input-values at each level of the tree, relying the partial results to the root.
Then, the root computes the overall aggregate result and distributes it down the tree.
Due to memory size limitations, it might not be possible to implement these techniques
unless the degree of each node in the tree is bounded. Anotherdrawback of this ap-
proach comes from its rigid structure. If an internal node ofthe tree fails during the
computation, the tree is partitioned, and the result, if computed, may not consider the
input-values of an unbounded number of nodes. Furthermore,these nodes may never
obtain the result.

Non-hierarchical computations have also been studied [4, 5, 21]. The approach
of choice is to aggregate the information atevery node of the network in amass-
distribution fashion as in load balancing [13, 30] algorithms. In this manner, all nodes
arrive at the final result concurrently. A potential shortcoming of this approach is the
energy consumption overhead of having all nodes transmitting and computing. Further-
more, the fact that all nodes communicate with other nodes during all the algorithm
greatly increase collisions with the consequent time and energy cost. As opposed to
their hierarchical counterpart, non-hierarchical approaches usually obtainsomeresult
even in presence of node failures. Thus, non-hierarchical approaches are more resilient
to failures. However, it is known5 that mass-distribution algorithms yield the wrong
result if those failures are arbitrary.

These arguments indicate that both pure approaches, hierarchical and non-
hierarchical, may have advantages and shortcomings. The algorithm presented in this
paper benefits from the good properties of both approaches bycombining them. The
protocol presented interleaves two algorithms, one following a tree-based approach
and one following a mass-distribution approach. The tree-based algorithm will pro-
vide the correct result with low time and energy complexity in a failure-free setting. If
the presence of failures prevents the tree-based computation from finishing, the mass-
distribution algorithm will compute and disseminate an approximation of the result.
The time taken by this algorithm is larger, but it is only incurred in presence of failures,
since as soon as the tree-based algorithm finishes, the execution of the mass-distribution
algorithm is aborted. Hence, the combined algorithm isearly stopping6.

In order to reduce collisions and energy consumption, a two-level hierarchy of nodes
is used. The actual computation is done by a small set of nodes, calleddelegate nodes,
that collect the sensed input-values from the non-computing nodes, calledslug nodes.
This structure has several advantages. First, collisions are reduced since they can only
occur while the delegate nodes collect the sensed input-values from the slug nodes.

4 E.g.: consider the set of nodes partitioned in two connectedcomponents that are powered off
by the adversary in odd and even steps respectively.

5 “If nodes crash during the computation, then our results do not carry over.” [21]
6 An algorithm is early stopping if it works more efficiently ina failure-free execution than in

an execution with failures.
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After that, delegate nodes are able to communicate in a collision-free fashion. Sec-
ond, energy is saved because the slug nodes can idle during the computation. Third,
the subnetwork of delegate nodes has constant degree, whichallows to easily build a
constant-degree spanning tree. Finally, since the set of delegate nodes is small, there is
a smaller probability that the tree-based algorithm will fail (since only failures of del-
egate nodes impact on it). Notice that, in presence of failures, the two-level structure
may have to be reconstructed; fortunately, this can be done fast and locally.
Model. Sensor nodes are expected to be deployed at random in large quantities over an
area of interest. Hence, we model the reachability of nodes with theGeometric Graph
Model7, noted asGn,r, wheren nodes are deployed at random inR

2 in a unit area,
and an edge between two nodes exists if and only if they are located at an Euclidean
distance of at most a parameterr8. As customary in the Sensor Networks literature,
we assume that nodes are deployed densely enough to ensure network connectivity
and sensing coverage. Thus, a straightforward applicationof [15] gives a bound of
r ∈ Ω(

√

log n/n) to achieve connectivity w.h.p.9

We assume that the area covered by a sensor node coincides with the range of trans-
mission. Otherwise, the analysis can be easily augmented with a sensing radius. Given
that we will use a radius of transmission reduced by a constant factor in some algo-
rithms, we further assume that such density is adjusted accordingly by a constant factor
to still accomplish connectivity and coverage using the reduced radius. This assumption
does not change the asymptotic cost.

Regarding models of sensor node constraints, we use the WeakSensor Model [8],
a harsh and comprehensive model that summarizes the literature on sensor node re-
strictions taking the most restrictive choices when possible. In this model, the commu-
nication among neighboring nodes is through broadcast on ashared channel. A node
receives a message if and only if exactly one of its neighborstransmits. There isno
collision detectionmechanism available and the channel is assumed to have only two
states: single transmission and silence/collision. Sensors nodes havenon-simultaneous
reception and transmission. Time is assumed to be slotted and all nodes have the same
clock frequency, but no global synchronizing mechanism is assumed. Nodes are woken
up by an adversary, perhaps at different times. Sensor nodesmay store only a constant
number ofO(log n) 10 bit words. We assume that sensor nodes can adjust their power
of transmission to only aconstantnumber of levels. Nodes are assumed to have lim-
ited life cycle, i.e., nodes can fail by stopping due to lack of power supply. However
they can restart once their batteries have been reloaded. Hence the failure model is
crash-recovery. Other restrictions include: short transmission range (r << 1), only one
shared channel of communication and lack of position information.

We further assume that the assignment of input-values is adversarial. Without loss
of generality, we assume those values to be positive. We alsoassume that nodes are

7 A.k.a.Unit Disk Graphwhen the radius is normalized instead of the area.
8 Notice that, in contrast with the popular random geometric graph model, we do not restrict

ourselves to a uniform distribution of nodes or a square areaof deployment.
9 We say that a parameterized eventEp occurswith high probability, or w.h.p.for short, if for

any constantγ > 0 there exists a valid choice of parameterp such thatPr{Ep} ≥ 1− n−γ .
10 Througout this paper,log meanslog2 unless otherwise stated.
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assigned a unique ID ofO(log n) bits and they know only the total number of nodesn.
However, the deployment of nodes is not an uncontrolled experiment. So, information
about the resultant topology can be introduced at a sink nodeafter deployment. In this
paper, we assume the presence of one distinguished node called sink, that does not fail
and knows tight bounds on the diameter of the networkD and the maximum degree∆.
Related Work. There is a large body of literature on aggregate computations in sensor
networks that includes both, theoretical and experimentalwork. Many of these results
are obtained under models that do not include important restrictions such as, limited
memory size [22], lack of position information [7, 14] and limited range of transmis-
sion [19,21]. Others, are purely experimental [16–18,23–25,29,33].

A hierarchical approach to aggregate information is presented in [14]. The solution
proposed defines a tree structure that requires node location information to carry out
the aggregation and it contemplates node failures in large networks. The protocol pre-
sented computes aggregation functions withO(n log2 n) andO(log2 n) message and
roundscomplexity respectively. Contention resolution and othercommunication issues
are assumed to be resolved by other underlying protocols.

Generic non-hierarchical gossip-based11 protocols for average computations in ar-
bitrary networks were studied in [4,21]. Results in [4] are presented for all gossip-based
algorithms by characterizing them with a matrix that modelshow the algorithm evolves
sharing values in pairs iteratively. It is shown there that,given a valueǫ > 0, and an
arbitrary network ofn nodes, where each nodei holds a valueνi and all nodes start syn-
chronously; then, with probability at least1−ǫ, in O(log n+log(n/ǫ)/(1−λmax((I +
P )1/2))) rounds, each nodei running a gossip-based algorithm characterized by the
matrix P , computes a valueν′

i such that
∑

i(ν
′
i − ν)2/

∑

i ν2
i ≤ ǫ2, whereν is the

average
∑

i νi/n andλmax(·) is the second largest eigenvalue. Additionally, an algo-
rithm that takes advantage of the broadcast nature of radio networks is included in [21]
giving similar bounds. In both papers, no details about collision resolution or routing
are included, and both require aω(1) memory size.

Another unstructured protocol for aggregate computationswas presented in [5].
A mass-distribution algorithm is also used there, althoughrelying on a different ran-
domly chosen local leader in each round to perform such distribution. It is shown
that, given a valueǫ > 0, and a Sensor Network ofn nodes with underlying graph
G with algebraic connectivitya(G)12, where each nodei holds a valueνi and all
nodes start synchronously; then, with probability at least1 − ǫ2/

∑

i(νi − ν)2, in
O(∆3 log(

∑

i(νi − ν)2/ǫ2)/a(G)) rounds, each nodei running the algorithm pre-
sented in [5] computes a valueν′

i such that|ν′
i − ν| ≤ ǫ, ∀i, whereν is the average

∑

i νi/n. If the deployment topology is known in advance, a parameterprobabilitypg

can be tuned to improve that bound toO(∆ log(
∑

i(νi − ν)2/ǫ2)/pgpsa(G)) rounds,
whereps is a probability that depends also on the deployment topology. Finally, the
energy metric, used in that paper, is the expected number of transmissions, bounded by
O(n∆2 log((

∑

i(νi − ν)2)/ǫ2)/a(G)), again, aside from communication and synchro-
nization overhead. Results.The main contribution of this paper is the presentation

11 In gossip-based algorithms interactions occur only in pairs.
12 A characterization of the deployment topology given by the second smallest eigenvalue of the

Laplacian matrix ofG.
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of a time-optimal early-stopping protocol that computes the average function in Sensor
Networks under the harsh Weak Sensor Model. More precisely,it is shown here that,
in a failure-free setting, w.h.p., this protocol returns the exact value and terminates in
O(D + ∆) steps, which is also shown to be optimal, and the overall number of trans-
missions is inO(n(log n + ∆/ log n + log ∆)) in expectation. On the other hand, in
presence of failures, the protocol computes the average of the input-values of a subset of
nodes that depends on the failure model. More precisely, it is shown that, after the last
node fails and w.h.p., the protocol takes an extra additive factor ofO(log(n/ε)/Φ2) in
time and an extra additive factor ofO(n log(1/ε)/Φ2) in the expected number of trans-
missions, whereε > 0 is the maximum relative error, andΦ is the conductance [20] of
the network of delegates. (E.g., for the unit squareΦ = Ω(log n/rn).)

Most of the previous works for the aggregation problem in Sensor Networks do not
take into account communication issues, make strong assumptions regarding node re-
sources, or do not give time or energy analyses. Among those papers that do analyze
efficiency, the bounds presented in [5] include among other parameters the initial distri-
bution of input-values, which introduces an unbounded factor in the worst case (recall
that our analysis is a worst case scenario regarding such distribution). On the other hand,
the protocol in [14] requires position estimation hardware. The protocols in [4,21] give
the same asymptotic bounds in the number of rounds than ours in presence of failures,
but both are not early-stopping, both requireω(1) memory size, and [21] requires a
clique topology. The analysis of all these protocols do not take collisions into account.

A time-optimal protocol to compute the maximum function canbe easily derived
from the average protocol. By flooding the delegates networkwith the maximum input-
value seen so far, the efficiency bounds of the tree algorithmare obtained. Regarding
other aggregate functions such as the sum, quantiles or count, they can be computed
using a protocol for average without extra cost as describedin [5,21]. Therefore, in this
paper, the attention is focused in computing the average of the input-values.

All in all, we obtain an energy-efficient algorithm that, even in the hardest model
of Sensor Network, and including the construction of the two-level structure, solves the
problem fast13. Furthermore, by proving a matching lower bound, this time is optimal in
absence of failures. To the best of our knowledge, this is thefist optimal early-stopping
algorithm for aggregate computations in Sensor Network.
Roadmap.A lower bound on aggregate computations is proved in Section2. Upper
bounds are shown in Section 3. In Section 3.1 the preprocessing algorithms are detailed.
The Aggregate Computation Scheme is presented and each of its phases analyzed in
Section 3.2. Finally, the overall efficiency of the protocolis shown in Section 3.3. The
details of some proofs as well as the figures are left to the appendix for brevity.

2 Lower Bound

In this section we present a lower bound on the time steps needed to compute an ag-
gregate function in a Sensor Network. The following definitions will be useful for this

13 In all our analyses communication costs due to contention resolution are included since we do
not assume the existence of any medium access control layer.
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purpose. For the sake of brevity, the details of the proof that uses the adversarial assign-
ment of input-values and the topology, is left to the appendix.

Definition 1. LetF : R
n → R, n ∈ N be an algebraic aggregate function overn real

numbers. We say thatF is one node sensitiveif, for any choice of valuesν1 ∈ R
n,

there exists another choice of valuesν2 ∈ R
n such thatν1 andν2 differ only in one

value, andF(ν1) 6= F(ν2).

Definition 2. Given a Sensor Network ofn nodes, where each node is assigned an
input-value, we say that a protocol to compute an aggregate function over these values
is assignment obliviousif it is independent of the specific assignment of input-values.

Theorem 1. Given a Sensor Network ofn nodes, whereD is the diameter of the net-
work and∆ the maximum degree, under the restrictions of the Weak Sensor Model, and
independently of randomization and failures,Ω(D +∆) time steps are needed in order
to compute a one-node-sensitive algebraic aggregate function using an assignment-
oblivious protocol.

3 Upper Bounds

The computation of aggregate functions is carried out by a protocol following a template
calledAggregate Computation Scheme. A key factor of our approach is the inclusion
of a preprocesing phase that defines a delegate-slug hierarchy and a schedule of trans-
missions to avoid collisions. Such preprocessing is asynchronous and uses time slots
that are not used in the Aggregate Computation Scheme. Hence, it is also used as a
maintenance algorithm in face of node failures because nodes running it do not collide
with nodes running the main part. For the sake of clarity, both parts, preprocessing and
the main procedure are described separately omitting thesedetails.

3.1 Preprocessing and Maintenance

The preprocessing/maintenance algorithm includes two phases. Due to the memory size
limitations, in the first phase delegate nodes are defined so that each delegate node
is within range ofΘ(1) delegates. Additionally, a second phase establishes schedules
of transmissions so that each group delegate-slugs can communicate without collid-
ing with neighboring groups. The first and second preprocessing phases can be imple-
mented as in [27] and [10] respectively. We overview here some necessary details.

The first phase of preprocessing is implemented as a distributed maximal indepen-
dent set14 (MIS) computation. Members of that set take the role of delegate nodes and
the rest become slug nodes. After running this phase using a radius of transmissionαr
for some0 < α ≤ 1, no delegate node is within distanceαr of another delegate node
and every slug node is within distanceαr of some delegate node. Furthermore, given

14 An independent setis a set of vertices in a graph such that for any pair of vertices, there is no
edge between them. An independent set ismaximalif no more vertices can be added to the set
and still be independent.
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these geometric properties and the fact that the hexagonal lattice is the densest of all
possible plane packings [11], every slug node is within distanceαr of less than6 del-
egate nodes (see Figure 2(a) in the appendix). This phase is triggered when an active
node does not receive transmissions from any delegate node.Thus, the preprocessing
procedure is by default used to re-build the hierarchy in face of a delegate node failure,
at the same cost.

The following upper bound on the number of delegate nodes canbe proved using
that the hexagonal lattice is the densest of all possible plane packings [11], the radius
lower bound to achieve connectivity w.h.p. under uniform distribution of nodes isr ∈
Ω(

√

log n/n) [15], and the assumption of complete coverage.

Remark 1.Given a Sensor Network ofn nodes deployed as a geometric graph, after
running the first phase of preprocessing as described, thereareO(n/ log n) delegate
nodes.

After becoming a delegate, a node reserves some time slots tobe used periodically and
exclusively by itself and its slugs, in the second phase of preprocessing. Slave nodes
can be in range of more than one delegate node. Hence, due to the hidden-terminal
problem15, there could be collision of reserved slots at a slug node. Inorder to avoid
that, the value ofα in the previous phase is limited to0 < α ≤ 1/4, whereas the time-
slots reservation is performed using the maximum ranger. With this modification, when
using a bigger range of transmissionβr, for 2α ≤ β ≤ 1/2, delegate nodes are in range
of other delegate nodes. Nonetheless, given that the hexagonal lattice is the densest of
all possible plane packings [11], a geometric calculation gives that there are at most
3⌈2β/α

√
3⌉(⌈2β/α

√
3⌉+1) delegate nodes within distance ofβr of any delegate node.

After preprocessing, each delegate node has reservedb ∈ Θ(1) time slots with a
period ofγ ∈ Θ(1). These slots are reserved to be used by itself and its slugs exclusively
within radiusr. The actual value ofb is chosen accordingly depending on the specific
protocol.

Among the reservedb slots (see Figure 3 in the appendix), the first step is used
by the delegate to transmit a beacon message. This message allows the slugs to iden-
tify which are the incoming reserved slots. In this way, local synchronism is achieved.
Additionally, two steps are reserved for the delegate to communicate with neighbor-
ing delegates and one step to broadcast the computation result. Another two slots are
reserved for the communication between slugs and the delegate, one slot for slugs trans-
missions and one slot for delegate acknowledgement. In thismanner, collision detection
is implemented. The slugs compete for these slots over various rounds ofγ slots and
the acknowledgement is used to signal success.

The following lemma establishes formally the efficiency of these phases. Further
details can be found in [8–10] and the references therein.

Lemma 1. (a) For any nodei running the first phase of preprocessing, for any0 <
α ≤ 1, at least one node within distanceαr of i becomes a delegate withinO(log2 n)
time steps and no two delegate nodes are within distanceαr of each other w.h.p. The
expected number of transmissions ofi during this phase is inO(log n) w.h.p. (b) For

15 Thehidden-terminal problem, a well-known problem in wireless networks, occurs when node
x is in range of nodesy andz, buty andz are not in range of each other.
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any nodei running the second phase of preprocessing, ifi is a delegate node, after
O(log n) time stepsi reserves a block ofb ∈ O(1) steps everyγ ∈ O(1) steps for local
use, i.e., this block does not overlap with the block of any other delegate node separated
by a distance at mostr, w.h.p. During this phase, ifi is a delegate node the expected
number of transmissions ofi is in O(log n) w.h.p., and ifi is a slug node it does not
transmit.

3.2 The Aggregate Computation Scheme

In the Aggregate Computation Scheme, nodes use only time slots reserved as described
in the previous section. Thus, local synchronism, collision detection among slugs and
their delegates, and non-colliding transmission schedules among delegates are avail-
able. For the sake of clarity, we focus on describing the scheme omitting these details.
We also omit the fact that nodes use only the reserved slots for transmissions, since
this overhead only introduces a constant factor in the efficiency analysis. Regarding
the range of transmission used, throughout the Aggregate Computation Scheme, a slug
node uses a radiusαr, whereas a delegate node uses a radiusβr. For clarity of presen-
tation, we describe the Aggregate Computation Scheme assuming that nodes do not fail.
In Section 3.3, we remove this assumption. Also, in order to obtain worst-case bounds,
we assume that all nodes are active.

Before describing the protocol, the following notation is defined. Denote the set of
delegate nodes and the set of slug nodes defined in preprocessing asM andS respec-
tively. For each slug nodei, denote the set of its delegates asM(i). For each delegate
nodej, denote the subset of delegate nodes located at one-hop ofj as N(j). Each
nodej ∈ M keeps track of its delegate-neighborhoodN(j). Furthermore, nodej up-
datesN(j) online by keeping track of the beacon messages of its delegate-neighbors.
This bookkeeping can be done by storing the IDs of the neighboring delegates because
|N(j)| ∈ Θ(1). For each nodek in the network, denote the input-value asνk.

The varios phases of the Aggregate Computation Scheme can bebroadly described
as in Algorithm 1 in the appendix. In the following sections,we detail the implementa-
tion of each of these phases.

TRIGGER Phase.By definition of a MIS, the sink node is either a delegate node or it
is in range of a delegate node. Therefore, theTRIGGER phase can be implemented as
follows. If the sink node is not a delegate, using a reserved slot, the sink node transmits
the message to one of its delegates. Upon receiving such a message or if the sink node
is a delegate node, delegates flood the network of delegates with the message using only
reserved slots. Each delegate node forwards the message broadcasted, including the ID
of the node from which it has received the message first. In this manner, a BFS spanning
tree among the delegate nodes is obtained at the same time that the trigger signal is
disseminated in preparation for our tree-based algorithm.Due to the broadcast nature of
a Sensor Network, while passing the message among delegates, slug nodes receive also
τ1. Since only reserved slots are used, the total time taken by this phase is inO(D) and
using the Remark 1 the total number of transmissions in this phase is inO(n/ log n).
Hence,τ1 is tuned to ensure that active nodes receive this message on time to start
theCOLLECTION phase. For nodes becoming active late, upon becoming active, nodes
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run the preprocessing phase, which includes an initial waiting period. Nodes in this
period that hear that the computation has already started donot join the computation,
although they do complete the preprocessing phase in preparation for future queries.
The following lemma establishes formally the bounds of thisphase.

Lemma 2. After the sink node starts disseminating the trigger message, all delegate
nodes have received the message withinO(D) steps and the overall number of trans-
missions isO(n/ log n).

COLLECTION Phase. At time τ1, nodes start running theCOLLECTION phase using
the input-values at that time step. Before describing the implementation of this phase,
we explain the communication primitive used. Nodes communicate in this phase using
the following well-known procedure. In each round, nodes choose uniformly at ran-
dom a slot within a window of slots to transmit its message. Starting with a window of
sizec1∆, the window size is repeatedly halved in each round down toc2 log n, where
c1 > 0 and c2 > 0 are constants chosen appropriately. After that, a final round of
c3 log2 n steps where nodes repeatedly transmit with probabilityc4/ logn is included.
Again,c3 > 0 andc4 > 0 are constants appropriately chosen according with the spe-
cific application. The intuition of the algorithm is the following. After the window size
is in the same order of the number of neighboring nodes, the message of a constant
fraction of slugs is received by the delegate in each round w.h.p. Since the reception
of those messages is acknowledged by the delegate, these slug nodes do not transmit
in future rounds. The final round is included so that transmissions are successful when
only o(log n) messages remain. We refer to this protocol as thewindowed protocol.
The COLLECTION phase is specified in Algorithm 2 in the appendix. Each slug node
i ∈ S begins this phase choosing one of its delegates to pass its input-value. The reason
to do that is to ensure that each input-value is used exactly once in the computation.
Using the windowed protocol, each slug node transmits a message to the delegate cho-
sen. The message transmitted containsνi and the ID of the delegate chosen. Given the
availability of delegate acknowledgements, a delegate receives exactly one input-value
per slug node.

A delegate node running theCOLLECTION phase does the following. Each delegate
node maintains two magnitudes that we callsumandweight. For each nodej ∈ M , we
denote the sum and weight asσj andωj respectively. Each delegate nodej initializes
the sumσj = νj and the weightωj = 1. Upon receiving (and acknowledging) the
transmission of one of its slug nodesi, the delegate adds the input-value received to
the sum and increases the weight. Notice that sum and weight values are polynomially
upper bounded so memory restrictions are not violated. The following lemma estab-
lishes formally the correctness and efficiency of theCOLLECTION phase. The proof
uses well-known techniques and the details are left to the appendix for brevity.

Lemma 3. Let V be the set ofn nodes in a Sensor Network,νi be the input-value of
nodei ∈ V , and letM be the set of delegate nodes. There exists aτ2 ∈ O(∆ + log2 n)
such that, after running theCOLLECTION phase with thatτ2, the following holds.V
has been partitioned in|M | disjoint subsets{V1, V2, . . . , V|M|} and each nodej ∈ M
holds two valuesσj andωj such that,∀k ∈ {1, . . . , |M |}; ∀j ∈ M : j ∈ Vk ⇒ (σj =
∑

i∈Vk
νi ∧ ωj = |Vk|), w.h.p. The time taken by the algorithm is inO(∆ + log2 n).
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The number of transmissions of delegate nodes during this phase is inO(n(∆/ log n +
log n)), and the expected number of transmissions of slug nodes during this phase is in
O(n(log n + log ∆)).

COMPUTATION andDISSEMINATION Phases.Upon completion of theCOLLECTION

phase, slug nodes standby waiting for the delegates to compute in theCOMPUTATION

phase and send back to them the result in theDISSEMINATION phase. We describe the
two approaches used in the following phases separately for clarity. Although, as ex-
plained before, they are run simultaneously. Two differenttime slots to communicate
among delegates were reserved for this purpose. If the result of the tree-based computa-
tion is obtained the mass-distribution-based computationis just stopped. Otherwise, the
mass-distribution algorithm continues until some result is returned. Also for the sake of
clarity, we describe both approaches assuming that nodes are activated early enough to
receive the trigger and stay active long enough to receive the result of the computation.
In Section 3.3 we specify the overall efficiency including the case where this is not true.
Tree-based Algorithm.The tree-based algorithm is well known and simple to describe.
Once a rooted tree is built, it includes three steps: the rootbroadcasts a query to all nodes
in the tree, then nodes convergecast the aggregated input-values to the root and finally
the root computes the function and broadcasts back the result to all nodes in the tree.
The details follow.

While broadcasting the time slotτ1 of the input-values that have to be used in the
computation, in theTRIGGERphase, a BFS rooted tree of constant degree is built among
delegate nodes by making each delegate node keep track of itstree neighbors. The
root of such a tree is either the sink node or a delegate node atone hop of the sink
node. Without loss of generality we assume it is the sink node. At τ1, all nodes run the
COLLECTION phase using the windowed protocol as described. Then, at time τ1 + τ2,
theCOMPUTATION phase starts. In this phase, each delegate node aggregates the input-
values by passing to its parent in the tree its sum and weight aggregated with the sum
and weight of its children. Thus, the root of the tree receives the total sum and weight of
the whole network and computes the average. Finally, in theDISSEMINATION phase, the
root node floods the network of delegates with the result which in turn is disseminated
to the slug nodes by each delegate node upon receiving it. Given that broadcast and
convergecast is run in reserved slots the time taken by the last two phases is justO(D)
and by Remark 1 the total number of transmissions is inO(n/ log n). The following
lemma formalizes these bounds.

Lemma 4. Let M be the set of delegate nodes andσi andωi be the sum and weight
of nodei ∈ M respectively obtained after running theCOLLECTION phase as de-
scribed. After running theCOMPUTATION and DISSEMINATION phases implemented
with a tree-based algorithm as described, withinO(D) steps all nodes have received
the value

∑

i∈M σi/
∑

i∈M ωi and the overall number of transmissions in both phases
is in O(n/ log n).

Mass-distribution Algorithm. In the mass-distribution protocol used in this pa-
per, after aggregating input-values in theCOLLECTION phase, delegate nodes
share a fraction with each delegate neighbor. More precisely, maxi∈M{|N(i)|} ≤
3⌈2β/α

√
3⌉(⌈2β/α

√
3⌉ + 1) as shown in Section 3. So, fixδ = 1 +
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3⌈2β/α
√

3⌉(⌈2β/α
√

3⌉+1). In each round, each delegate node passes a fraction1/2δ
of its sum and weight to each neighboring delegate node and keeps the rest for itself.
The delegate nodes update their sum and weight values with the shares received and
repeat. After enough number of iterations, all sum and weight values converge to a pair
of values whose ratio is the average sought. We call this protocol Stingy Share(see
Algorithm 3 in the appendix for details).

Given that the shares are the same for all neighbors andδ is known, delegate nodes
do not need to specify the destination and simply transmit the sum and weight. Af-
ter enough number of rounds, each delegate nodei can compute the average with the
accuracy desired as the ratioσi/ωi. Furthermore, theDISSEMINATION phase is inte-
grated in this phase by default given that, although sums andweights are transmitted to
neighboring delegate nodes, all neighboring nodes receivethose transmissions because
they are produced in reserved slots. Notice that Stingy Share does not violate the mem-
ory restrictions since only a constant number of values are received in each round and
the sum and weight values are still polynomially upper bounded. Of course, precision
limitations due to real number computations are still in order16.

We analyze now Stingy Share and prove its correctness17. Given that the fraction of
σ andω shared in Stingy Share is round independent, the algorithm can be characterized
by a matrix of shares as follows. For the sake of clarity, without loss of generality
assume that delegate nodes IDs are in{1, . . . , |M |}. Let σ(t) = (σ

(t)
1 . . . σ

(t)
|M|) and

ω(t) = (ω
(t)
1 . . . ω

(t)
|M|) be the vectors18 of sums and weights of all delegate nodes after

roundt. Let P = (pij) be a matrix inR
|M|×|M| such thatpij = 1/2δ if j ∈ N(i),

pij = 1 − |N(i)|/2δ if j = i, andpij = 0 otherwise. Then,σ(t) = σ(0)P t and
ω(t) = ω(0)P t are the vectors of sums and weights in roundt respectively. Given that
P is stochastic, this characterization can be also seen as a Markov chainX = {Xt}
where the state space isM and the transition matrix isP .

Mass-distribution algorithms only converge to the result.Hence, a metric of such an
approximation has to be defined. In this paper, we use therelative pointwise distance,
which is defined asmaxi |νi − ν|/ν. The following lemma, showing the correctness
of Stingy Share, can be proved using the fundamental theoremof Markov chains [28].
The details are left to the appendix for brevity.

Lemma 5. (Correctness) LetV be the set ofn nodes in a Sensor Network,νi be the
input-value of nodei ∈ V , andν =

∑

i∈V νi/n their average. LetM be the set of
delegate nodes defined in the preprocessing of the AggregateComputation Scheme. Let
σ

(t)
i andω

(t)
i be the sum and weight of delegate nodei ∈ M obtainedt rounds after

theCOLLECTION phase of the Aggregate Computation Scheme. Then, implementing the
COMPUTATION phase using Stingy Share, there exists aτ3 ≥ 0 such that, for allt ≥ τ3,
|ν − σ

(t)
i /ω

(t)
i |/ν ≤ ε, for all i ∈ M and for a given parameterε > 0.

16 Were precision requirements more relevant than memory restrictions, nodes could simply
avoid dividing by2δ in each round, compute the result as a rational number, and the divi-
sion could then be performed by the powerful sink nodes only.

17 We assume familiarity with elementary Markov chains and spectral graph theories. For an
introduction refer to [6,12].

18 Throughout the paper, we use row vectors for clarity.
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To analyze the efficiency of Stingy Share, we leverage the vast body of research work on
bounding the rate of convergence of Markov chains to a stationary distribution, i.e., the
mixing time. For Markov chains with underlying graphs with geometric properties, there
is a natural notion useful to boundλ1, calledconductance[20]. Consider the geometric
graphGM = {M, EM}, underlying the Markov chainX, where{i, j} ∈ EM if and
only if i andj are located within an Euclidean distance of at mostr. Let theweightof an
edge{i, j} in the underlying graphGM bewij = pijπi = pjiπj . Then, the conductance
of X with underlying graphGM is Φ(GM ) , min{∑i∈C,j /∈C wij/

∑

i∈C πi}, where
the minimization is over all subsetsC ⊂ M such that0 <

∑

i∈C πi ≤ 1/2. Then,
the conductance can be seen as the minimum, taken over all state subspaces, of the
conditional probability that the chain in stationarity moves out of a state subspace given
that it is there. We bound the mixing time using the conductance as in [32]. (For the
sake of brevity, we leave the details to the appendix.) The following lemma, which can
be derived from Lemma 7 and Remark 1, establishes formally the efficiency of the last
two phases implemented as a mass-distribution algorithm.

Lemma 6. LetM be the set of delegate nodes andσi andωi be the sum and weight of
nodei ∈ M respectively obtained after running theCOLLECTION phase as described.
After running theCOMPUTATION and DISSEMINATION phases implemented with a
mass-distribution algorithm as described, withinO(log(n/ε)/Φ2) steps all nodes have
received the value

∑

i∈M σi/
∑

i∈M ωi with maximum relative errorε and the overall
number of transmissions in both phases is inO(n log(1/ε)/Φ2).

3.3 Overall Efficiency of the Average Protocol

Theorem 2. Given a Sensor Network ofn nodes, where∆ is a tight upper bound on
the maximum number of neighbors of any node andD the diameter of the network. Let
τ1 be the time step at which the average of the input-values of sensor nodes has to be
computed. Under the restrictions of the Weak Sensor Model, the following holds. (a)
There exist constantsκ1 > 0 and κ2 > 0 such that, if the set of active nodes does
not change in the interval[τ1 − κ1(D + log2 n), τ1 + κ2(D + ∆)] then, the Aggregate
Computation Scheme solves the Average Problem withinO(∆ + D) time steps w.h.p.
and the expected number of transmissions is inO(n(log n + ∆/ log n + log ∆)) w.h.p.
(b) Otherwise, the Aggregate Computation Scheme solves theAverage Problem over
a subset of nodes, that depends on the failure model, with maximum relative errorε
over the input-values of the nodes in that subset, withinO(∆ + D + log(n/ε)/Φ2)
time steps, after the last failure, w.h.p., and the expectednumber of transmissions is in
O(n(log n + ∆/ log n + log ∆ + log(1/ε)/Φ2)), after the last failure, w.h.p.

Proof. (a) By Lemmas 1 and 2, the total time of preprocessing and theTRIGGER

phase is inO(D + log2 n) w.h.p. Therefore, for large enoughκ1, nodes active in
[τ1 − κ1(D + log2 n), τ1 + κ2(D + ∆)] receive the trigger message on time to par-
ticipate in the protocol w.h.p. By Lemmas 3, 4, and given thatD and∆ can not be in
o(log3 n) simultaneously, these nodes complete theCOLLECTION, COMPUTATION and
DISSEMINATION phases inO(D + ∆) steps. Thus, the claimed time follows. On the
other hand, the claimed number of transmissions is a direct consequence of Lemmas 1,
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2, 3, 4, and Remark 1.(b) The running time is a direct consequence of Lemmas 1, 2,
3 and 6. The claimed number of transmissions follows from Lemmas 1, 2, 3, 6, and
Remark 1.

It is important to notice that both algorithms, tree-based and mass-distribution based,
compute the correct result even ifall slug nodes crash, as long as this event happens af-
ter theCOLLECTION phase. Of course, non-active slug nodes will not receive theresult,
but the sink node is either a delegate node or a neighbor of a delegate node. There-
fore, the sink node still receives the result. The resilience to this event is not a minor
advantage, given that, by Remark 1, there are at leastΩ(n(1 − 1/ logn)) slug nodes
in the network. Additionally, the mass-distribution algorithm continue working even in
presence of delegate failures, returning some result whosevalidity is bounded as long
as the number of nodes failing is bounded and the distribution of input-values is known.
Furthermore, this algorithm can be easily improved to stillreturn the correct result in
presence of a constant number of delegate node failures in each one-hop neighborhood
without extra cost. To see how, consider the following modification roughly described.
In each round of theCOMPUTATION phase, each delegate node transmits together with
its sum and weight, the number of its delegate neighbors. Then, each neighboring dele-
gate node can include the effect of the mass lost by the delegate crashed in its compu-
tation proportionally.

In order to gain intuition on the significance of the bounds obtained for the mass-
distribution algorithm, it is useful to bound the conductance using the geometry of the
deployment area. For example, It can be proved that for any unit area of rectangular
shape, with smaller sideg, the conductance is bounded byΩ(g log n/rn). For the sake
of brevity, we leave the details to the appendix.
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Appendix

A Proof of Theorem 1

Proof. The lower bound is shown exploiting the adversarial assignment of input-values,
the adversarial wake-up and the topology. Consider a SensorNetwork ofn nodes with
maximum degree∆ and diameterD, where some nodey is located atΩ(D) hops of
any node in a subsetX, |X | ∈ Ω(∆) of nodes that form a clique. Such a setX exists
as proved in the following claim.

Claim. Given a geometric graph ofn nodes and maximum degree∆, there exists a
subset of nodesS that form a clique such that|S| ∈ Ω(∆).

Proof. Let x be a node of degree∆. Then, there are∆ + 1 nodes located in a circle
of radiusr centered onx, call this circleC. In order to prove the claim, it is enough to
show that there is a circle of radiusr/2 insideC that contains at leastΩ(∆) nodes. For
the sake of contradiction, assume there is no such circle. A constant number of circles of
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radiusr/2 are enough to cover completelyC. By our assumption, each of these circles
containso(∆) of the nodes inC. But then, the total number of nodes inC is in o(∆)
which is a contradiction.

For the sake of contradiction, assume first that there existsan assignment-oblivious
protocolP that computes a one-node-sensitive functionF over any values assigned
to nodes in this network in timeo(D). Consider an assignment of valuesν1 such that
a valueν1(x) is assigned to some nodex ∈ X andF(ν1) is the value returned to
y by P in o(D) steps. SinceF is sensitive, there exists an assignmentν2 such that
ν1(x) 6= ν2(x) that makesF(ν1) 6= F(ν2). Consider the execution ofP under this
new assignmentν2. It is not possible that a value different thanF(ν1) is returned toy
byP in o(D) steps under this new assignment becausex andy are separated byΩ(D)
hops, which is a contradiction.

Similarly, for the sake of contradiction, assume now that there exists an assignment-
oblivious protocolP that computes a one-node-sensitive functionF over any values
assigned to nodes in this network in timeo(∆). In order to computeF , all nodes have
to transmit at least once19. Consider a nodex ∈ X that is scheduled to transmit last in
X byP20. Consider now an assignment of valuesν1 such that a valueν1(x) is assigned
to x andF(ν1) is the value returned toy byP in o(∆) steps. SinceF is sensitive, there
exists an assignmentν2 such thatν1(x) 6= ν2(x) that makesF(ν1) 6= F(ν2). Consider
the execution ofP under this new assignmentν2. It is not possible that a value different
thanF(ν1) is returned toy byP in o(∆) steps under this new assignment becausex is
the last node to transmit in a clique ofΩ(∆) nodes, which is also a contradiction.

B Proof of Lemma 3

Proof. Using well-known techniques as in [10], it can be proved that, after running
the windowed protocol, each delegate node has received the input-value of all its slugs
w.h.p., the time taken by the protocol is inO(∆ + log2 n) steps, the number of trans-
missions of a delegate node during the windowed protocol is in O(∆ + log2 n), and
the expected number of transmissions of a slug node is inO(log n + log ∆). Thus, the
claim follows from these facts, by definition of the algorithm and using Remark 1.

C Mixing-time of Stingy Share

Given thatX is ergodic, the eigenvalues ofP are1 = λ0 ≥ λ1 ≥ · · · ≥ λ|M|−1 > −1.
It is known that the mixing time is related to thespectral gapof the transition matrix
1−λmax, whereλmax = max{λ1, |λ|M|−1|}. We precise that relation as in [32]. First,
in order to measure the deviation from stationarity, define therelative pointwise distance
aftert rounds over a non-empty subsetU ⊆ M as∆U (t) = maxi,j∈U{|p(t)

ij −πj |/πj}.

19 Eventually the sink node might only receive values. To disregard this node does not change
the analysis.

20 If P is randomized, takex to be a node that has a positive probability of transmitting the last
in X.



18

Then,∆U (t) is the largest relative difference betweenµ(t) andπ at any statej ∈ U ,
maximized over all possible initial statesi ∈ U . Given that for alli, j ∈ M , pijπi =
pjiπj , the Markov chainX is time-reversible. The following proposition establishes the
relation between the spectral gap and mixing time.

Proposition 1. ( [32, Prop. 3.1]) LetP be the transition matrix of an ergodic time-
reversible Markov chain,π its stationary distribution and{λi : 0 ≤ i ≤ |M | − 1} its
eigenvalues, withλ0 = 1. Then, for any non-empty subsetU ⊆ M and all t > 0, the
relative pointwise distance∆U (t) satisfies∆U (t) ≤ λt

max/ minj∈U πj , whereλmax =
max{|λi| : 1 ≤ i ≤ |M | − 1}.

The eigenvalueλ|M|−1 is relevant only if it is negative. However, given that∀i ∈
M, pii ≥ 1/2 by definition of Stingy Share, it holds thatλ|M|−1 ≥ 0 [32]. Therefore,
λmax = λ1. Therefore, in order to obtain an asymptotic bound on the mixing time, it
is enough to boundλ1. The following result [32], boundsλ1 using the conductance as
defined in Section 3.2.

λ1 ≤ 1 − Φ2

2
. (1)

Lemma 7. (Mixing time) LetV be the set ofn nodes in a Sensor Network,νi be the
input-value of nodei ∈ V , andν =

∑

i∈V νi/n their average. Consider the Aggregate
Computation Scheme to solve the Average Problem as described. Let M be the set
of delegate nodes defined in the preprocessing phase. Letσ

(0)
i and ω

(0)
i be the sum

and weight of delegate nodei ∈ M obtained after theCOLLECTION phase. Then,
implementing theCOMPUTATION phase using Stingy Share as described, afterτ3 ∈
O((ln(1+2/ε)+ln |M |)/Φ2) rounds the following condition is satisfied. For allt ≥ τ3,

|σ(t)
i /ω

(t)
i − ν|/ν ≤ ε, for all i ∈ M and for a given parameterε > 0.

Proof. As shown in Lemma 5, in order to prove this claim, given anε > 0, it is enough
to find a timeτ3 ≥ 0 such that, for allt ≥ τ3, maxi∈M{|µ(t)

i − πi|/πi} ≤ ε′, where
ε′ = ε/(2 + ε). From Proposition 1 and using the fact that the stationary distribution is

uniform, we havemaxi∈M{|µ(t)
i −πi|/πi} ≤ λt

1|M |. Hence, we look for the minimum
t ≥ 0 such thatλt

1|M | ≤ ε/(2 + ε). Using that1 − x ≤ e−x, 0 < x < 1 [26, §2.68],
we want

|M |
et(1−λ1)

≤ ε

2 + ε

t ≥ 1

1 − λ1

(

ln

(

1 +
2

ε

)

+ ln |M |
)

(2)

Replacing Equation 1, the claim follows.

D Proof of Lemma 5

Proof. The Markov chainX characterizing Stingy Share is finite and irreducible. Addi-
tionally, given that the underlying graph has self-loops, the g.c.d. of all closed walks is
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1. Therefore,X is aperiodic. Then, by the fundamental theorem of Markov chains [28],
X is ergodic and it has a unique stationary distribution. Since P is doubly stochastic,
the systemπ = πP admits the solutionπ = (1/|M | . . .1/|M |) which, by the afore-
mentioned theorem, is unique. Letµ(t) be the distribution at roundt. Given that the
chain converges to the stationary distribution, we know that, for eachε′ > 0, there
is a τ ≥ 0 such that, for allt ≥ τ , |µ(t)

i − πi|/πi ≤ ε′, for all i ∈ M . Then,
for any initial distributionµ(0) and for all t ≥ τ it holds that,(1 − ε′)/|M | ≤
∑

i∈M µ
(0)
i (P t)ij ≤ (1 + ε′)/|M |, for all j ∈ M . But then, it must also hold that

(1 − ε′)/|M | ≤ (P t)ij ≤ (1 + ε′)/|M |, for all i, j ∈ M . To see why, assume for the
sake of contradiction that there is a pairi′, j′ ∈ M such that(P t)i′j′ < (1 − ε′)/|M |
or (P t)i′j′ > (1 + ε′)/|M |. Then, it would be enough to setµ(0)

i′ = 1 and the
rest of the components to0 to make the previous assertion false. For any delegate
nodei ∈ M , σ

(t)
i /ω

(t)
i = (σ(0)P t)i/(ω(0)P t)i =

∑

j σ
(0)
j (P t)ji/

∑

j ω
(0)
j (P t)ji.

Then, for all t ≥ τ , (1 − ε′)
∑

j σ
(0)
j /(1 + ε′)

∑

j ω
(0)
j ≤ σ

(t)
i /ω

(t)
i ≤ (1 +

ε′)
∑

j σ
(0)
j /(1 − ε′)

∑

j ω
(0)
j . Given that

∑

j σ
(0)
j /

∑

j ω
(0)
j = ν, we have thatt ≥ τ ,

ν(1 − 2ε′/(1 + ε′)) ≤ σt
i/ωt

i ≤ ν(1 + 2ε′/(1 − ε′)). Thus, |σ(t)
i /ω

(t)
i − ν|/ν ≤

2ε′/(1 − ε′) and the claim follows makingε′ = ε/(2 + ε).

E Bounding the Conductance

Consider the geometric graphGM = {M, EM}, underlying the Markov chainX,
where{i, j} ∈ EM if and only if i and j are located within an Euclidean distance
of at mostr. In order to further bound the mixing time, it is useful to bound the con-
ductance using the geometric properties ofGM . Although the distribution of delegate
nodes in the plane is close to uniform,GM is not a regular graph and bounding the con-
ductance precisely is difficult. Given that we are interested in asymptotic bounds on the
time taken by theCOMPUTATION phase, it is enough to show an asymptotic bound on
the conductance. The magnitude of the conductance depends on the bottlenecks present
in the network. Given that the distribution of delegate nodes is roughly uniform, the
shape of the area where nodes are deployed governs the presence of bottlenecks.

In order to gain intuition about the rate of convergence, we analyze the conductance
of the network when nodes are deployed in a rectangular area of smaller sideg.

Lemma 8. Given a unit rectangular area of deployment with minimum sideg, the con-
ductance ofGM = {M, EM} is in Ω(g log n/rn).

Proof. Recall that the conductance of a Markov chainX with underlying graphGM

is Φ(GM ) , min{∑i∈C,j /∈C wij/
∑

i∈C πi}. Wherewij = pijπi = pjiπj is the
weightof an edge{i, j} in GM and the minimization is over all subsetsC ⊂ M such
that0 <

∑

i∈C πi ≤ 1/2. Given that the stationary distribution is uniform,
∑

i∈C πi =
|C|/|M |. Hence,

∑

i∈C πi is maximized when|C| is maximized up to|M |/2. However,
∑

i∈C,j /∈C wij depends on howC is chosen so, a more careful analysis is needed.
Consider a complete cover of the area with circles of radiusαr as in Figure 1. Let

ℓ be the number of circles and letCi be the set of delegate nodes covered by circlei.
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αr

Fig. 1. Illustration of Lemma 8.

Under complete coverage assumptions, by definition of the maximal independent set,
we know that for every circlei it must hold thatCi 6= ∅. Furthermore, given a pair of
overlapping circlesi, j, it must hold thatCi \ Cj 6= ∅ andCj \ Ci 6= ∅. Then, it is
possible to define sets of delegate nodesC′

1 ⊆ C1, . . . , C
′
ℓ ⊆ Cℓ so that

⋃

i C′
i = M

and∀i, j : C′
i ∩ C′

j = ∅.
Given the graphGM = {M, EM}, consider a subgraphG′ = {V ′, E′} where

V ′ = M andE′ = {{i, j}|{i, j} ∈ EM ∧ i ∈ Ct ∧ j ∈ Cs ∧ (t = s ∨ ∀k ∈ Cs : (k 6=
j ⇒ {i, k} /∈ E′))}. In words, all edges connecting delegate nodes within the samedefine properly
subset plus one edge between each pair of sets of overlappingcircles. Using the same
algorithm on this subgraph, the Markov chain characterizing it still is finite, irreducible
and aperiodic so, it is ergodic, time-reversible and it has uniform stationary distribution
π = (1/|M | . . . 1/|M |). Therefore,

∑

i∈C πi = |C|/|M |.
Consider now the inductive process of adding delegate nodesto C, one subset at a

time. Each new subset contributes to increase|C| by at least one. On the other hand,
there is always a way of adding an overlapping circle so that the number of edges of
G′ crossing the boundary ofC does not increase by more than one. Therefore, the
minimum conductance forG′ is achieved when

∑

i∈C πi is big.
We consider then only subsets where the boundary is a single curve. Among all

subsets of size close to|M |/2, we want to find the one with the minimum number of
edges crossing the boundary, i.e., the boundary of minimum length. Finding the precise
boundary among circles that makes|C| = |M |/2 may be impossible because circles
have different number of nodes. However, we look for an asymptotic bound, and the
number of nodes in any circle is also bounded from above by a constant. Therefore, an
approximate boundary is enough. Such approximation is a line, parallel to the side of
lengthg, that halves the area. Under complete coverage assumptions, there are at least
g/αr circles touching that line, partially or completely in one side of it. Each of these
circles has at least 1 edge crossing the boundary. Thus, the total number of edges cross-
ing such a boundary is at leastg/αr. Therefore,

∑

i∈C,j /∈C wij =
∑

i∈C,j /∈C pijπi ∈
Ω(g/r|M |). On the other hand,

∑

i∈C πi ∈ Θ(1) thus, the conductance ofG′ is also
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Ω(g/r|M |). Adding edges toG′ can not decrease the conductance so this is also a
lower bound forGM . As observed before,|M | ∈ O(n/ log n), thus the claim follows.

F Figures

Algorithm 1 : The Aggregate Computation Scheme.τ1 is the time slot to measure the
input-values,D is the diameter of the network and∆ the maximum degree.

TRIGGER: The sink node broadcasts(τ1, D, ∆).
COLLECTION: Delegate nodes aggregate slugs input.
COMPUTATION: Delegate nodes compute the aggregate function.
DISSEMINATION: Delegate nodes distribute the result.

Algorithm 2 : TheCOLLECTIONphase for the Average Problem.

For slug nodei ∈ S:
Choose arbitrarily a delegate nodej ∈M(i).
Using the windowed protocol, transmit message(i, j, νi) with radiusαr.

For delegate nodej ∈M :
Setσj ← νj .
Setωj ← 1.
for τ2 stepsdo

if a message(i, j, νi) is receivedthen
Setσj ← σj + νi.
Setωj ← ωj + 1.

Algorithm 3 : TheCOMPUTATION phase for the Average Problem: Stingy Share.

For delegate nodei ∈M :
for k=1 to τ3 do

Transmit(i, k, σi, ωi).
Receive(j, k, σj , ωj) for all j ∈ N(i).
Setσi ← (1− |N(i)|/2δ)σi +

P

j∈N(i) σj/2δ.
Setωi ← (1− |N(i)|/2δ)ωi +

P

j∈N(i) ωj/2δ.
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(a) (b)

Fig. 2. Illustration of maximum degree.

b steps

1 2 2 3 4 4 5

(1) Beacon message
(2) Communication with delegate neighbors
(3) Broadcast result
(4) Slugs transmission
(5) Delegate acknowledgement

Fig. 3. Illustration of time-slots usage.


