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Abstract. In this work, using a game-theoretic approach, cost-seasitecha-
nisms that lead to reliable Internet-based computing asegded. In particular,
we consider Internet-based master-worker computatiohsreva master proces-
sor assigns, across the Internet, a computational task &b af potentially un-
trusted worker processors and collects their responsekeréomay collude in
order to increase their benefit.

Several game-theoretic models that capture the natureeopribblem are ana-
lyzed, and algorithmic mechanisms that, for each given tebst and system
parameters, achieve high reliability are designed. Adaiily, two specific real-
istic system scenarios are studied. These scenarios astearsgf volunteering
computing like SETI, and a company that buys computing syfilem Internet
computers and sells them to its customers in the form of ataskputation ser-
vice. Notably, under certain conditions, non redundardcallion yields the best
trade-off between cost and reliability.

Keywords Internet-based computing, Mechanism design, Game th&ask exe-
cution, Fault-tolerance, Rational players, Collusion.

1 Introduction

Motivation. As traditional one-processor machines have limited coatfral re-
sources, and powerful parallel machines are very expetwsivbtain and maintain, the
Internet is emerging as the computational platform of chdar processing complex
computational jobs. Several Internet-oriented systerdgpastocols have been designed
to operate on top of this global computation infrastructesamples include Grid sys-
tems [7, 31] and the “@home” projects [2], such as SETI [19¢tlgssical example

* This research was supported in part by Comunidad de Madaiut &-0505/T1C/0285; Spanish
MEC grant TIN2005-09198-C02-01; EU IST #15964 (AEOLUS); Eldrie Curie European
Reintegration Grant IRG 210021; NSF grant CCF 0632838; hedJniversity of Cyprus. A
preliminary version of this work appears in the Proceedofdke 7th IEEE International Sym-
posium on Network Computing and Applications (NCA 2008)gem 315-324, Cambridge,
MA, 2008.



of volunteering computing Although the potential is great, the use of Internet-dase
computing (also referred as P2P computing—P2PC [10, 32ifnis=d by the untrust-
worthiness nature of the platform’s components [2,12] Ussttake SETI as an example.
In SETI, data is distributed for processing to millions ofwatary machines around the
world. At a conceptual level, in SETI there is a machine, itale master that sends
jobs, across the Internet, to these computers, call themvdhieers These workers exe-
cute and report back the result of the task computation. ewehese workers are not
trustworthy, and hence might report incorrect results.dllguthe master attempts to
minimize the impact of these bogus results by assigningaheedask to several work-
ers and comparing their outcomes (thatégjundantask allocation is employed [2]).

In this paper, Internet-based master-worker computatiomstudied from a game-
theoretic point of view. Specifically, these computatiorss modeled as games where
each worker chooses whether tolmnest(that is, compute and return the correct task
result) or cheater(that is, fabricate a bogus result and return it to the mpagteldition-
ally, cost-sensitive mechanisms (algorithms) that pretie necessary incentive for the
workers to truthfully compute and report the correct reaudt designed. The objective
is to maximize the probability of the master of obtaining theerect result while min-
imizing its cost (or alternatively, increasing its benefit) particular, we identify and
propose mechanisms for two paradigmatic applications. éigra volunteering com-
puting system as the aforementioned SETI where computingessors are altruistic,
and a second scenario where a company distributes compaskg among contractor
processors that get an economic reward in exchange.

Background and Prior/Related Work. Prior examples of game theory in distributed
computing include work on Internet routing [20, 21, 28],aese/facility location and
sharing [11, 14], containment of viruses spreading [22]resesharing [1, 16], and task
computations [32]. For more discussion on the connectidwdxen game theory and
computing we refer the reader to the survey by Halpern [18]the book by Nisan et
al. [25].

In traditional distributed computing, the behavior of thystem components (i.e.,
processors) is characterized a priori as either good ordegEnding on whether they
follow the prescribed protocol or not. In game theory, pesogs are assumed to act
on their ownself-interestand they do not have an a priori established behavior. Such
processors are usually referred-asonal [1,12]. In other words, the processors decide
on how to act in an attempt to increase their own benefit, erradtively to lower their
own cost.

In algorithmic mechanisms desidh, 8, 24, 26], games are designed to provide the
necessary incentives so that processors’ interests arsdr@ed by acting “correctly.”
The usual practice is to provide some reward (resp. persitld the processors (resp.
do not) behave as desired. The design objective is to foresiaedl uniqudash equi-
librium (NE) [23], i.e., a strategy choice by each game participanhghat none of
them has incentive to change it.

In [9, 18] reliable master-worker computations have beersittered by redundant
task-allocation. In these works probabilistic guarantefesbtaining the correct result
while minimizing the cost (number of workers chosen to perfdhe task) are also
shown. However, a traditional distributed computing ajpfois used, in which the



behavior of each worker is predefined. In this paper, mudteripayoff parameters are
studied and the behavior of each worker is not predefinechdoting new challenges
that naturally drive to a game-theoretic approach.

Two other related works [4, 30] where the worker behaviorredpfined consider
collusion in desktop grid computing. In both proposals,gbal is to identify colluders
by means of an statistical analysis that requires the psocedo compute multiple
times. In the present paper, we study the more challengioblggm of dealing with
collusion when each processor computes only once.

Master-worker computations in a game-theoretic model Hzeen studied be-
fore [32]. In that paper, the master can audit the resulismet by rational workers with
a tunable probability. Bounds for that audit probabilitg @omputed to guarantee that
workers have incentives to be honest in three scenariognoht allocation with and
without collusiort, and single-worker allocation. They conclude that, intmeodel,
single-worker allocation is a cost-effective mechanismcggly in presence of collu-
sion. In our work, similar conclusions are extracted undstain system parameters
even in the presence of weaker types of collusion. Additlgnaur work complements
that work in various ways, such as studying more algorithnts games, including
a richer payoff model, or considering probabilistic chegtiFinally, useful trade-offs
between the benefit of the master and the probability of dowep wrong result are
shown for the one-round protocols proposed.

Distributed computation in presence of selfishness wasstistied within the scope
of Combinatorial Agencie Economics [3]. The computation is carried out as a game
of complete information among rational players. The godhat work is to study how
the utility of the master is affected if the equilibria spas#mited to pure strategies. To
that extent, the computation of a few Boolean functionsadueated. If the parameters of
the problem yield multiple mixed equilibrium points, it issumed that workers accept
one “suggested” by the master.

A somewhat related work is [5] in which they face the probldrbaotstrapping a
P2P computing system, in the presence of rational peersgddids to incentive peers
to join the system, for which they propose a scheme that modsry psychology
and multilevel marketing. In our setting, the master cowdd their scheme to recruit
workers. We assume in this paper that enough workers aragvtth participate in the
computation.

Framework. We consider a distributed system consisting of a masteegsmr that as-
signs a computational task to a set of workers to computeemdrthe task resdlt It

is assumed that the master has the possibility of verifyihgtiver the value returned by
a worker is the correct result of the task. It is also assurhativerifying an answer is
more efficient than computing the task [13] (e j.P-complete problems iP # N P),
but the correct result of the computation is not obtainetéfverification fails. There-
fore, by verifying, the master does not necessarily obtarcorrect answer (e.g., when

! Cooperation among various workers concealed from the maste
2 The tasks considered in this work are assumed to have a usituion.
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all workers cheaf) As in [5, 32], workers are assumed to be rational and seekate m
imize their benefit, i.e., they are not destructively malis. We note that this assump-
tion can conceptually be justified by the work of ShneidmashRarks [29] where they
reason on the connection of rational players—of algorithméechanism designs—and
workers in realistic P2P systems. Furthermore, we do nasiden non-intentional er-
rors produced by hardware or software problems.

The general protocol used by master and workers is the follpvirhe master pro-

cess assigns the taskriavorkers. Each worker processiocheats with probabilitng)
and the master processor verifies the answers with somehplibpa,,. If the mas-
ter processor verifies, it rewards the honest workers andliges the cheaters. If the
master does not verify, it accepts the answer returned by#jerity of workers. How-
ever, it does not penalize any worker given that the majadty be actually cheating.
Instead, the master rewards workers according to one ohtlee following models.
Either the master rewards the majority onRefvard ModeRR ,,,), or the master rewards
all workers independently of the returned val&e(ard ModeRR,,), or the master does
not reward at alllReward ModelR ).

The model used in this paper comprises the following fornoditision (that covers
realistic types of collusions such as Sybil attacks [6]) rk&os form colluding groups.
Within the same group workers act homogeneously, i.e.ee#dh choose to cheat, or
all choose to be honest, perhaps randomizing their decisidnssing a unique coin.
In the case that, within the group, all workers choose to beeht then only one of
them computes the task, and all of them return that resutigotaster (in this way they
avoid the cost of all of them executing the task). In the chaeall workers choose to
cheat, then they simply agree on a bogus result and senattie master. In addition,
we assume that all “cheating groups” return the same incoareswer. Since the master
accepts the majority, this behavior maximizes the chankeseating the master. Being
this the worst case, it subsumes models where cheaters dweoessarily return the
same answer. Note that this behavior can be viewed also asna ofocollusion. We
also assume that if a worker does not perform the task, thisn@most) impossible
to guess the correct answer (i.e., the probability is nég#y. The master, of course, is
not aware of the collusions.

Given the protocol above, the game is defined by a set of paeasndat include
rewards to the workers that return the correct value andspuménts to the workers
that cheated (that is, returned the incorrect result antdc¢goght”). Hence, the game is
played between the master and the workers, where the firgsw@obtain the correct
result with a desired probability, while obtaining a dedicgility value (in expectation),
and the workers decide whether to be honest or cheatersydiegeon their expected
utility gain or loss. In this paper, we design several gamesb study the conditions
under which unique Nash equilibria (NE) are achieved. EaEhrésults in a different
benefit for the master and a different probability of acagptn incorrect result. Thus,
the master can choose some game conditions so that a unigtiaiNgest fits its goals
is achieved.

3 Alternatively, one might assume that the master verifiesitmply performing the task and
checking the answers of the workers. Our analysis can easifgodified to accommodate this
different model.



Contribution. The main contributions of this paper are:

1. The identification of a collection of realistic payoff paraters that allow to model
Internet-based master-worker computational environméntgame theoretic terms.
These parameters can either be fixed exogenously (they stensparameters) or be
chosen by the master.

2. The definition of four different games that the master camddo be played: (a)
A game between the master and a single worker, (b) a game &etive master and
a worker, playedr times (with different workers), (c) a game with a master and
workers, and (d) a game efworkers in which the master participates indirectly. Games
(c) and (d) consider collusions, game (a) considers no siols as there is only one
worker, and game (b) only considers singleton groups, whireheaters return the
same value. Together with the three reward models definedealvee have overall
defined twelve games among which the master can choose theaomgnient to use
in each specific context.

3. The analyses of all the games under general payoff modelshancharacterization
of conditions under which a unique Nash Equilibrium pointdached for each game
and each payoff-model. These analyses lead to mechanistrihighmaster can run to
trade cost and reliability.

4.The design of mechanisms for two specific realistic scesariodemonstrate the util-
ity of the analysis. These scenarios reflect, in their funelatal elements, (a) a system of
volunteering computing like SETI, and (b) a company thatsxgmputing cycles from
Internet computers and sells them to its customers in tha fifra task-computation
service. Our results show that for (a) the best choice isnedundant allocatiorgven
with only singleton colluding group&urthermore, in this case we show that to obtain
always the correct answer it is enough to verify with arbityasmall probability. As an
example of the results obtained in (b), if the master onlyosles the number of work-
ersn, we show that, agaiaven with only singleton colluding groupiee best choice is
non-redundant allocation. However, in order to achievesminess always, the required
probability of verifying can now be large.

Paper Structure. In Section 2 we provide basic definitions to be used througtimu
paper. In Section 3 we present and analyze the games propoSttion 4 the mech-
anisms for the two realistic scenarios are designed. Fjradiction 5 presents conclu-
sions and future lines of work.

2 Definitions

Game Definition. Game participants are referred as workers and master. br tod
define the game played in each case, we follow the customaajyio used in game
theory. Given that this notation is repeatedly used througthe paper, we summarize

it in Table 1 for clarity. We assume that the master alwayshe an odd number of
workersn. In order to model collusion among workers, we view the setvofkers

as a set of non-empty subsé#s = {W1,...,W,} such thath:1 |W;| = n and

W, NnW; =0 foralli # j,1 < 4,5 < {. We refer to each of these subsets as
a group of workersor a group for short. We also refer to groups and the master as



players Workers in the same group act homogeneously, i.e., eithen@ose to cheat,
or all choose to be honest, perhaps randomizing their ecisi tossing a unique coin.
Workers acting individually are modeled as a group of size. dnis assumed that the
size or composition of each group is known only to the membegtkse group, but all
cheating groups return the same incorrect answer.

A strategy profile is defined as a mapping from players to puegegies, denoted
ass. For succinctness, we express a strategy profile as a ¢otlemitindividual strat-
egy choices together with collective strategy choices. iRstance,s; = C,sy =
V,R_;m, F_in, T i Stands for a strategy profilewhere grough; chooses strategy
C (to cheat), the master chooses stratéyfto verify), a setkR_;y, of groups (where
groupW; and the master are not included) randomize their strategicelwith prob-
ability pc € (0,1), a setF_;); of groups deterministically choose strate@yand a
setT_;y; of groups deterministically choose strategyto be honest). For games with
one worker and the master, the strategy profile is composlgdgriheir choices. For
examplen¢y, stands for the master’s payoff in the case that the workeateldeand the
master verified. We require that, for each grétip pg) =1- pg) and, for the master,
py = 1—py;. For games where we only have one group or all groups use i sib-
ability, we will expresq)(C’) (resp.p(g)) simply bypc (resp.pz). Whenever the strategy
is clear from the context, we will refer to the expected tytibf groupW; asU,, and
for the master a#’;,. In the games studied the master and the workers have camplet
information on the algorithm and the parameters involvedept on the number and
the composition of the colluding groups.

Equilibrium Definition. We define now precisely the conditions for the equilibrium.
In this context, the probability distributions are not ipgadent among members of a
group. Furthermore, the formulation of equilibrium coiatis among individual work-
ers would violate the very definition of equilibrium sincestbhoice of a worker does
change the choices of other workers. Instead, equilibriomditions are formulated
among groups. Of course, the computation of an equilibrivightnnot be possible
since the size of the groups is unknown. But, finding appetegonditions so that the
unique equilibrium is the same independently of that size,groblem can be solved.
An important point to be made is that the majority is evaldateterms of number
of single answers. Nevertheless, this fact has an impadiepayoffs of each player,
which in this case is a whole group, but not in the correctoé#ise equilibrium formu-
lation.

Recall from [27] that for any finite game, a mixed strategyfigar* is amixed-
strategy Nash equilibriunffMSNE) if, and only if, for each player (either a worker
group or the master),

Un($r,0" 1) = Un(55,0% 1), Y57, 57 € supp(a), 1)
Uﬂ(sﬂ’a a'trr) Z UW(S;T’ a'irr)v
VSr, Sh : sz € supp(ol), s, & supp(ol). (2)

In words, given a MSNE with mixed-strategy profie, for each playetr, the
expected utility, assuming that all other players do nongeaheir choice, is the same
for each pure strategy that the player can choose with pesitobability ing*, and it



is not less than the expected utility of any pure strategh wibbability zero of being
chosen ing*. A fully MSNE is an equilibrium with mixed strategy profibewhere, for
each playerr, supp(o,) = Sr.

Payoffs Definition.We detail in Table 2 the payoff definitions that will be usetigh-
out the paper. All the parameters in this table are non-negalotice that we split the
reward to a worker intdVB 4 and MC 4, to model the fact that the cost of the master
might be different than the benefit of a worker. In fact, in gomodels they may be
completely unrelated. Among the parameters involved, wgaras that the master has
the freedom of choosing the cheater pendfy’: and the worker reward for comput-
ing MC 4. By tuning these parameters and choosinthe master achieves the desired
trade-off between correctness and cost. Given that theemdges not know the com-
position of groups (if there is any), benefits and punishmarg applied individually to
each worker, except for the cost for computing the t&igk’s which is shared among
all workers belonging to the same group (as it was explainghle Introduction).

3 Equilibria Analysis

In the following sections, different games are studied ediog to the participants in-
volved. In order to identify the parameter conditions forieththere is an NE, Equa-
tions (1) and (2) of the MSNE definition are instantiated inreparticular game, with-
out making any assumptions on the payoffs. We call thésgeneral payoffs model.
From these instantiations, we obtain conditions on therpaters (payoffs and prob-
abilities) that would make such equilibrium unique. Figalwe introduce the reward
models described before on those conditions, so that wearapare among all games
and models in Section 4.

3.1 Gamel:1: One Master - One Worker

We start the analysis by considering the game between thienzasl only one worker.
Hence, collusions can not occur and we refer to the groumpi&he worker.”

General Payoffs Model.In order to evaluate all possible equilibria, all the diéfet
mixes have to be considered. In other words, according wighrange of values that
pc andpy, can take, we can have fully MSNE, partially MSNE, or purextsgies NE.
More specifically, bottpe andp,, can take values eithé, 1, or in the open interval
(0,1). Depending on these values, the different conditions inaigns (1) and (2)
have to be achieved in order to have an equilibrium. Henaeditions onp. andpy,
for each equilibrium can be obtained from these equationietsled below.

— Casepc € (0,1),py € (0,1): From Equation (1), there is a fully MSNE if
Un(V,pe) = Upn(V,pe) andUw (C, py) = Uw (C, py) simultaneously. These
equations determine the valuemf andp,, in the MSNE as follows.

pemey + (1 = pe)mey, = pemey + (1 — pe)mey
Mgy — Mgy '
mey — Mgy, — Mey; + Mey;




pywey + (1 — py)wey = pywey, + (1 — py)weys
Wey — Wey '
Wey — Wey — Wey + Wey

— Casepc = 0, py € (0,1): For the worker, Equation (1) trivially holds. From Equa-
tion (2),Uw (C,pv) > Uw (C,py) must hold, i.e.,

pywey, + (1 —pv)wey > pyvwey + (1 — py)wey.
Then, iwaV + wgy, — Wgy — wey > 0,

Wey — Wey
Wey + Wey — Wey — Wey

Py =

Else, ifwey + ws), — way; — wey <0,

< Wey — Wey
Wey + Wey — Wey — Wey

V%
For the master, from Equation (1)\y;(V,pc) = Un(V,pe) must hold, which
implies
pemey + (1 = pe)mey, = pemey; + (1 — pe)mey
Mey = Mev:s

sincepe = 0. So, under these conditions, there is an MSNE.
— Casepc = 1, py € (0, 1): For the worker, Equation (1) trivially holds. From Equa-
tion (2), it must be true thadt'y (C, py) > Uw (C, py). So,

pywey + (1 — py)wey > pywgy, + (1 — py)wey.

Then, ifwey + Wey — Wy — Way, > 0,

> Wey — Wey
y = .
wey + wey — Wey — Wey
Else, ifwey + way — Wey — Way, < 0,
Wey — Wey
wey + wgy — Wey — Wey

py <

For the master, from Equation (Ijas(V, pc) = Un (V, pe), and sincepe = 1,

pemey + (1 = pe)mey, = pemey + (1 — pe)meys
mecy = Mey;.

So, under these conditions, there is an MSNE.



— Casepc € (0,1), py = 0: For the master, Equation (1) trivially holds. From Equa-
tion (2), it must hold that/,; (V, pc) > Uar(V, pc). Then,

pemey + (1 —pe)mey > pemey + (1 — pe)mi,,.
Then, ifmg,, + mgy; — me; —mey > 0,

Mgy — Mey
mgy + Mey — Mgy — Mey

pc 2>

Else, ifmg,, + mgy — mgy — mey <0,

Mgy — Mgy
mgy + Mey — Mgy — Mey

pc <

For the worker, from Equation (1) (C, py) = Uw (C, py), and given thap,, =
0 we have that
pvwey + (1 = py)wey = pvwgy + (1 = py)wey
Wey = Wey-

So, under these conditions, there is an MSNE.
— Casepc € (0,1), py = 1: For the master, Equation (1) trivially holds. From Equa-
tion (2)1 UIL[(Vpr) Z UIW(VapC) and

pemey + (1 —pe)mzy, > pemey + (1 — pe)mey.
Then, ifmey — mgy, — mey; + mey > 0,

o > Mgy — Mgy
mey — Mgy, — Mey + Mgy

Else, ifmey — mg,, — mey; + mey <0,

e < Mey — Mgy
mey — Mgy, — Mey + My

For the worker, from Equation (1) (C, py) = Uw (C, py) and sincepy, = 1,

pywey + (1 = py)wey = pywey, + (1 — py)wey
Wey = Weay,-
So, under these conditions, there is an MSNE.

Finally, the following are conditions to have a pure-stgéte NE with profiles.

— Cases = {C,V}: mcy > mey andwey > wgy,.
— Cases = {C, V}: mg), > mgy; andwg,, > wey.
— Cases = {C,V}: myy; > mey andwgyy > wey.
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— Cases = {C, V}: mgy; > mg,, andwgy > weyp-

On the other hand, the expected utility of the master and tr&ev in any equilib-
riumareUys = pepymey + (1 —pe)pymey, +pe(1—py)mey + (1 —pe) (1 —py)mey
andUw = pepywey +pe(l —py)wey + (1 — pe)pywgy, + (1 —pe)(1 — py)wey; re-
spectively, and the probability of accepting the wrong aa19&P.rong = (1 — pyv)pc.
Reward Model R,,. Recall that in this model we assume that when the master does
not verify, it rewards only the majority. Given that thereigly one worker, in this case
the master rewards always. Under the payoff model detail@dlle 2, the payoffs are

mey = —MCy wey = — WPe
may, = MBr — MCV — MC_A Wey = WBA - WCT
mcf:_MPW_MOA wcv: WBA

Mgy = MBgr — MCyy wey = WB4 — WCr

Replacing appropriately, we obtain the conditions for &lgaum, probability of ac-
cepting the wrong answer, and utilities for each case.

Reward Model R,. In this model we assume that if the master does not verify, it
rewards all workers independently of the answer. Henceatladysis is identical to the
previous case.

Reward Model Ry. Recall that in this model we assume that if the master does not
verify, it does not reward the worker. Hence, under the piayofiel detailed in Table 2,
the payoffs are

mey = —MCy wey = —WPe

migy, = MBr — MCy — MCya way, = WBA — WCr
mey = —MPyy wey =0

mgy = MBr wey; = —WCr

Replacing appropriately, we obtain the conditions for Brium, probability of
accepting the wrong answer, and utilities for each case eawilsee in the next sec-
tion. The probability of accepting the wrong result, the tagrstility for each case, the
conditions for equilibrium, and the workers utility for theward modelsk,,, andRRy
can be obtained from Tables 3 and 4 by replacing 1.

3.2 Gamel:1™: n Games One to One

In this section it is considered the case where the mastsnrimstances of the one to
one game analyzed in the previous section. Workers are assttmtompute the equi-
librium as if they were playing alone against the master.déegiven the assumption
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that the players are rational and compute the equilibriudetmde what to do, the con-
sideration of collusion is meaningless for this game. Heallegroups are assumed
to have exactly one member; we do assume however that cheatern the same in-
correct value (to obtain worst case analysis). Games wherkens know about the
existence of other workers and they can collude to fool thetenaare studied later.
Given the equilibria computed in Section 3.1, the mastes ruinstances of that game,
one with each of the workers, choosing to verify or not with probabilipy, only once.
Additionally, when paying while not verifying, the mastewards all or none according
with the one-to-one game.

General Payoffs Model.Since this game is just a multiple-instance version of tlee pr
vious game, under the payoff model detailed in Table 2, thelitimns for equilibria
and the utility of a worker are the same as in Section 3.1. Kewéhe expected utility

of the master and the probability of accepting the wrongltefiange. In order to give
those expressions, we define the following notation.lebe the set of partitions in
two subset§F, T) of W, i.e, W = {(F,T)|FNT =0, FUT = W}. Fis the set of
workers that cheat arifl the set of honest workers. We also define master payoff func-
tionsms : {0,1,...,n} — R, that still depend on the number of workers that cheat or
not, but are not necessarily justtimes the individual payoff of a:1 game (reflecting
the fact that the cost may include some fixed amount for uniguiéication or unique
cost of being wrong). For the sake of clarity, we will dendte probability that the
majority cheats a®¢. Then, the probability that the majority cheats, the praliglof
being wrong, and the master’s utility are

Z H p(f) H (t)

(F,T)EW fEF teT
|F|>|T|

Pw'r ong :(1 - pV)PCa

Um =pv Y pr)H Nymy+

(F,T)eEW fEF teT
-p) > II#" 10
(F,T)eW fEF teT

Respectively, whergwy, = mey (|F|) + mgy,(|T]) andmy; = mey (|1 F|) + mey(IT).

Reward Models.In this game, we assume that the cost of verificafiffy, is indepen-
dent of the number of workers (since all cheating workensrrethe same value) and
that, as long as some worker is honest, upon verification dten obtains the correct
result. Itis important to note that, under this assumptioa probability of obtaining the
correct result is not — P,0n4, given that if the master verifies but all workers cheat,
the master does not obtain the correct result. Recall tlairihister plays instances
of a one-to-one game, thus, depending on the model, it mustrdeevery worker if
not verifying independently of majorities. We summarize grobability of accepting
the wrong result, the master utility for each case, the d@rd for equilibrium, and
the workers utility for the reward modefg,,, and Ry in Tables 3 and 4 respectively
(Tables 3 and 4 give also these values for Gameeplacing appropriately = 1).
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3.3 GameO:n: No Master in the Game

Another natural generalization of the game of Section 3d ¢c®nsider a game in which
the master assigns the taskitavorkers that play the game among them. Intuitively, it
can be seen that, in case of not verifying, workers will cotage be in the majority
(to persuade the master). Given that workers know the @dstef the other workers,
including collusions in the analysis is in order. The quasbf how the participation of
the master in the game would affect the results obtainedsrstittion is addressed in
Section 3.4.

General Payoffs Model.In order to analyze this game, it is convenient to partitioa t
set of groups. More precisely, consider disjoint sEtsI" and R, such thatt” U T U

R = W, as follows.F is the set of groups that choose to cheat as a pure straegy, i.
F={W;|W; W/\p(C’) = 1}. T is the set of groups that choose not to cheat as a pure
strategy, i.e.7 = {W;|W; € WApg) = 0}. Ris the set of groups that randomize their
choice, i.e.R = {Wi|W; € WApY € (0,1)}. LetF_, = F\{W;}, T_; = T\{Wi},
andR_; = R\ {W;}. LetR_; be the set of partitions in two subséf3p, Rr) of R_;,
i.e,R_; ={(Rr,Rr)|RFNRr =0ARrURr = R_;}. LetE[wgz)] be the expected
payoff of groupW; for the strategy profilg, taking the expectation over the choice of
the master of verifying or not. Then, for each graidp € W and for each strategy
profiles_; = R_;, F_;,T_;, we have

Ui(s_i,si = C) =
> II #7 II a-p)Blg) o, ),
(Rp,RT)ER_; WsERF WieRT T*ibLiI;Tv
Ui(s_i,si = 6) =
> II # II a-p)Blwy o, )
(RF,RT)GRfi WfERF WieRr TfiUETv
Si:C

In order to find conditions for a desired equilibrium, we stud

AUl(S) = Ui(S,i,Si = C) - Ui(S,i, S; = 6)

For clarity, defineNr—; = > gcr .Ur, IS, Nr—i = Y scr ,ur, [S], @nd, for

each partiion(Rr, Rr) € R;, let Awl) = Elw(_] — Elw!” ], whenNp_; —

Np_; > |Wi|, A’wé—l) = E[wij)zc] — E[wL(gZ):E]’ WhenNT_i — Np_; > |Wl|, and

Awg? = E[wii)zc] - E[MS)ZE]’ when|Ng_; — Nr_;| < |W;]|. Given that the payoff
depends only on the outcome majority, we have
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AU, (s) =

ch)z wermer_, 1] p T a-p9)+
Np—i=Nr—i>|Wil W,eRp W:ERT

AwX)Z (Beroer ] e IT a —p¢ )+
Np—; NT 1i<iW7|Wf€RF WieRT

Awf)z (Rp,Rr)ER_; H e’ H (1-pd). 3)
Nr_;i—Np_ z>|W|Wf€RF WieRT

Restating the equilibrium conditions of Equations (1) giiiderms of Equation (3),
for each group € R that does not choose a pure strategy, the equilibrium dondg
AU;(s) = 0; for each group € F (i.e., that chooses to cheat as a pure strategy) the
condition iIsAU;(s) > 0; and for each groupe T, it must hold thatAU; (s) < 0.

Lemma 1. Given a game as defined,i‘iwéi) > Awg? > Awé_i) for every group
W; € W, then there is no unique equilibrium whefe # ( (i.e, all groups decide
deterministically).

Proof. For the sake of contradiction, assume there is a uniqueilequih o for which
R#(D andAwg) > Awﬁ? > Awg) for every groupgh; € W. Then, for every group
W; € R, AU;(s) = 0 must be solvable. Iﬂwé’) > 0, for all W; € R, there would be
also an equilibrium where all groups it choose to cheat andwould not be unique,
which is a contradiction. Consider now the case where thdstsesoméV,; € R such
thatAwg) < 0. Then, it must hold thatR| > 1, otherwiseAU; = 0 is false for\v;.
Given that|R| > 1, the probabilities given by the summations in Equation (8)Ii¥;
are all strictly bigger than zero. Therefore, given thHtl; = 0 must be solvable, at
least one owa( >0 andAwCZ) > 0 must hold, which is also a contradiction with

the assumption thaﬂwg > Awl?) > Awé_i).

In the following sections, conditions to obtain unique diguia under different pay-
off models are studied. In all these models it holds tha;iéi) > Awg? > Awé_i) for all
W,; € W. Then, by Lemma 1, there is no unique equilibrium whEret (. Regarding
equilibria whereR = (), unless the task assigned has a binary output (the answbecan
negated), a unique equilibrium where all groups choose¢atdk not useful. Then, we
makeAwéi) <0, Awg? <0 andAwg) < O0forall W; € W so thatAU; > 0 has no
solution and no group can choose to cheat as a pure strategy, the only equilibrium
is for all the groups to choose to be honest, which sol4&s < 0. Thereforep(z)
YW; € W, and henc® ,ong = 0.
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Reward Model R,,. Replacing appropriately the payoffs detailed in Table 2p&in
for any groupl; € W

Awl) = —py|Wi (WP +2WB4) + |Wi| WB4 + WCr,
A = —py|Wi| (WP + WB4) + WCr,

To makeAw!” < 0 we want

|Wi|WBA+ WCr
py >
|Wi|(WPe +2WBa)

YW, e W.

And the expected utilities are then

UA{ = MBR —vaCV - nMC’A
Uw, = |W;|WB4 — WC7, for eachiW; € W.

Reward Model R,. Similarly, for any groupgh; € W,

Awl) = —py|Wi|(WPe + WB4) + WCr,

Aw) = —py|Wi|(WPe + WB4) + WCr,

Awl) = —py|Wi| (WP + WBa) + WCr.

Then, the condition to obtain the desired unique equiliorand the expected utili-
ties are
WCr
= |Wi|(WPe + WBA)
Un = MBr — py MCy — nMCly,
Uw, = |W;|WB4 — WC7, for eachW; € W.

NYW e W,

Reward Model Ry. Again, for any grough’; € W,

AwS) = —py|Wi|(WPe + WB4) + WCr,
Aw) = —py|Wi|(WPe + WB4) + WCr,
Awl) = —py|Wi|(WPe + WB4) + WCr.
And the condition to obtain the unique equilibrium and thpeoted utilities are
WCr
PV 2 W (WPe + WB)

Uy = MBr — py(MCy +nMCy),
Uw, = py|W;|WB4 — WCfr, foreachi; € W.

Wi € W,
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In order to maximize the master utility we would like to desigames wherg,,

is small. Therefore, we look for a lower bound pp. It is easy to see that, in all of
the three payoff models, the worst case lower bound is givehé&group of minimum
size. Although at a first glance this fact seems countetingyiit is not surprising due
to the following two reasons. On one hand, colluders ardylit@ be in the majority,
but the unique equilibrium occurs when all workers are hbor@s the other hand, the
extra benefit that workers obtain by colluding is not agathstmaster interest since it
is just a saving in computation costs.

3.4 Gamel:n: One Master - n Workers

We now observe how the conditions obtained in the previousegare modified if the
master also participates as a player. The equilibria aisatggarding groups follows
the same lines as in Section 3.3. However, now Equationslj2) have to be applied
to the master, as follows.

General Payoffs Model.Recall thatR is the set of groups that randomize their choice.
Let R be the set of partitions in two subsé¢f3r, Rr) of R,i.e.,R = {(Rp, Rr)|RrN
Rr =0 A RrURr = R}. Then, for the master,

U]\,{(R, F, jﬂ’7 SpM = V) =

oo I 28 T a=pymrons,

TUR
(RF,RT)ER fERF tERT SMZT\;

U]\,{(R,F,T,SM ZV) =

> I 2 T a=pmrons .

(Rp,R7)ER fERF teRr Z;i%

From Equation (1), ifpy, € (0,1), the MSNE condition isUy (R, F,T, sy =
V) = Uy(R,F,T,syy = V). From Equation (2), ifpy = 0 the condition is
Uu(R,F,T,spyr = V) < Uy(R,F,T,sy = V), and ifpy = 1 the condition is
UM(R,F,T, SM = V) > UM(R,F,T,SJW :V)

The MSNE conditions for groups are the same as in SectionH®Ace, the con-
ditions obtained for each of the reward models are the sameetker, additional con-
ditions are obtained from the master-utility conditionsfalfows. As in Section 3.3,
the desired unique MSNE occurs whgsn = 0. Using that, in the master-utility con-
ditions we get for the reward mod@l,,, that if py, < 1, MBr — MCy — nMCy =
MBr — nMCy, and ifpV =1, MBr — MCy — nMCy > MBr — nMCy4. There-
fore, in any case it must hold/Cy, = 0. For the reward modeR .., the master-utility
conditions give, ifpy < 1, MBgr — MCy — nMC4 = MBr — nMC, and if
py = 1, MBgr — MCy — nMCy4 > MBr — nMCy. Therefore, again)/Cy, = 0.
Finally, for the reward modeRRy, the master-utility conditions give iy, < 1,
MBr — MCy — nMC4 = MBp and ifpv =1, MBr — MCy — nMCy > MBg.
Therefore MCy, = MC4 = 0. Hence, to achieve the goal of forcing the groups to be
honestjn this game, verifying must be free for the master.
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4 Algorithmic Mechanisms

In this section two realistic scenarios in which the masterker model considered
could be naturally applicable are proposed. For these sosnwe determine appropri-
ate games and parameters to be used by the master to maxisrbeaefit.

The basic protocol (mechanism) used by the master to adoepbtrect task result
while maximizing its benefit is as follows: Given the payoffarameters (these can
either be fixed exogenously or be chosen by the master), tetensends the task (to be
computed), the game to be played, the probability of vetificep,,, the payoff model
to be used, and a certificate to the workers. After receiliegéplies from all workers,
and independently of the distribution of the answers, thetergprocessor chooses to
verify the answers with the probabilipy,. If the answers were not verified it accepts the
result of the majority. Then, it applies the correspondimgard model. The protocol is
detailed in Algorithm 1.

Algorithm 1: Master algorithm

1 send (task, game,,, payoff modelR, certificate) to all workers
2 uponreceiving all answerslo
verify the answers with probability,,

w

4 if the answers were not verifigden
5 accept the majority

6 end

7 apply the reward model

8 endupon

Hence, the master, given the payoff parameters, can detertné game and pa-
rameters (including the value pf,) to force the workers into a unique NE, that would
result to the correct task result (with high probability)ilehmaximizing the master’s
benefit. Examples of specific parameters (including theevaly,,) and games such
that the master can achieve this are analyzed in the foltpaisections.

For computational reasons, the master also sends a ceetifacthe workers. The
certificate includes the strategy that if the workers plalylead them to the unique NE,
together with the appropriate data to demonstrate this facte details for the use of
the certificate are given in Section 4.3.

4.1 SETI-like Scenario

The first scenario considered is a volunteering computistesy such as SETI@home,
where users accept to donate part of their processors ik tth collaborate in the
computation of large tasks. In this case, we assume thateseikcur in no cost to
perform the task, but they obtain a benefit by being recoghéehaving performed
it (possibly in the form of prestige, e.g, by being includedSETI’s top contributors
list). Hence, we assume th&B4 > WCr = 0. The master incurs in a (possibly
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small) costM C 4 when rewarding a worker (e.g., by advertising its partiggrain the
project). As assumed in the general model, in this model thsten may verify the
values returned by the workers, at a cas€’, > 0. We also assume that the master
obtains a benefit/Br > MC 4 if it accepts the correct result of the task, and suffers a
costMPyy, > MC), if it accepts an incorrect value.

Under these constraints, the equilibria for gamésand1:1™ collapse to one single
equilibrium point. Also, since gamkn requires free verification( Cy, = 0) for the
equilibrium to be unique, it cannot be used in this scendrie different applicable
cases are summarized in Table 5. In this table it can be obdénat in games:1 and
1:1™ the equilibrium is achieved with any value pf in an interval. The master has
no way to force the specific value p§ that a worker uses within the interval. And, in
particular, it cannot forcge = 0 (i.e.,Prong = 0). Additionally, looking at the master
utility, all games havé/,; < MBgr. However, in game(in,Ry) the master can make
U, arbitrarily close toMByr, by settingpy, arbitrarily small. (Notice that the utility of
a worker will be arbitrarily small likewise, but given thabvkers are volunteering this
is not a problem.)n conclusion, the gamé(n,Ry) withn = 1 ((W| = |[W;| = 1)
and very smalpy is the best choice in this scenario, since it satisRgs..,,, = 0 and
UM ~ MBR.

4.2 Contractor Scenario

The second scenario considered is a company that buys catigmat power from In-
ternet users and sells it to computation-hungry costunierthis case the company
pays the users an amousit= WB,4 = MC 4 for using their computing capabilities,
and charges the consumers another amaddiBg > MC 4 for the provided service.
Since the users are not altruistic in this scenario, we asghat computing a task is
not free for them (i.e. WCs > 0), and they must have incentives to participate (i.e.,
Uw, > 0,YW,; € W). As in the previous case, we assume that the master verifies a
has a cost for accepting a wrong value, such &, > MC), > 0. Again, under
these assumptions, the equilibria for gamigsand1:1" collapse to unique equilibria
and gamd.:n can not be used. The different cases are summarized in TaBlesgrve
that there are cases in this table in which the group has inegatpected utilitylyy, .
Given that in this scenario workers are not altruistic, tivéinot accept to participate in
such a game. This fact immediately rules out gamdsRy) and (:1",Ry). Similarly,
this restriction forces the master to use a valug\of> WCr /|W;| WB4,YW; € W

in game (:n,Ryp). Finally, comparing game$:(,R.,) and 0:n,R,), it can be seen that
the master would never choose the former, because the lawerdbofp,, is smaller

in the latter while the rest of expressions are the same,hnlkads to a larger master
utility.

In this scenario, beyond choosing the game and number ofes®#s in the previ-
ous one, we assume that the master can also choose the rétuiggrdo the workers for
correctly computing the task, and the punishmBfft; if they are caught returning an
incorrect value. All possible combined variations of thpaeameters yield a huge num-
ber of cases to be considered. In this work, we assume thatdkter only can choose
one of these parameters, while the rest are predefined. A& sfuither combinations
is left for future work.
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The following notation is used for clarity. Whenever a paeé®n may be different
among different games being compared, a super-index itedithe game to which the
parameter belongs. For instan ;’3) is the utility of the master for game, j). MC 4
and WB4 are referred to as simpl§ (= MC 4 = WBy).

A simple observation of game8:(»,R.) and (:n,Ry) leads to find that in both
cases it is convenient for the master to choose the smalbssilpe value opy,. For

. . . : LeRa
this reason, in the following we assume in these games vpﬁﬁé‘s ) = vazgis +
(07, Ra) andpgf:”’n‘”) = Wz 4 4(0mRo) for arbitrarily smally(®"R=) > 0 and

A OR0) 5 ()4,

Tunable n: Regarding gamed (1,R,,) and (1:1",R.,), in this case the master has no
control overpe or py,, since they are completely defined by the application patarse
Hence, the probability of accepting a wrong answer mightrbérarily close tol, even

for game (:1™,R,,), becausé grows withn if p > 1/2 as shown in Claim 4.2.
Given that we want to design a mechanism that can be appliadytgetting, we rule
out these games for this case. In the case thisttunable, the benefit of the master
in games (: n,R,) and (:n,Ry) decreases as increases. Hence for these games
the master chooses = 1. (So,|W| = |W;| = 1.) Additionally, these games provide
Purong = 0. Out of these games) (n,R,) is better iff WCr + WCrMCy/S >
S+ WCrMCy/(WP:+5).

Tunable WP¢: Comparing games)(: n,R,) and (:n,Rg), U}?"’Ra) = MBgr —
PRI MOy, —nS = MBr — WCr MCy /(S + WP O™ Ra)) —p§ —~(0mRa) M,
andU 9" R0 = MBr — plI RO ey, — pI RIS — MBr — WCr MGy /S —
nWCr — vOmRa MOy, — 4O0Re)nS, Thus, game((: n,Ry) is better iffn >
WCrMCy/S(S — WCr) for small enoughy(©:»Re), Otherwise, (:n,R.) is better
for small enoughy(®:»R=) and large enough¥P. (%™ R=) As argued in the previous
case, in this case the master has no control pyeAlthough the master can reduce
WP to increasey, it can not make, arbitrarily close to 1 to reducB ,;,ong in case
pc is big (and consequentlp¢). Then, some cases might lead to a big probability of
accepting the wrong answer. Thus, ganie$,R,,) and (1:1*,R,,) are ruled out from
consideration.

Tunable S € (WCr, MBg): In this casen is fixed, and given that we do not make
any assumptions about its magnitude, we evaluate gaimehile evaluating gamé:

1™ for an arbitraryn. Using calculus, the utility of the master for ganme ¢,R.,) is
maximum whens\%2 ) — +. /MGy, WCr /n — WPc. Due to the aforementioned
constraints, only values in the intervi@dV’C7, MBg) are valid forS. Assuming then
that WOy < S Re) ~ VB, the utilities ard]]ﬂ?:"’Ra)(S = SI(T?QZ’R*‘)) = MBgr —
2/nMCy WOr +nWPe andU Y™™ = MBr — WCr MCy, /SO Re) —n WG —
~OnRa) (MY + nSOmRe)). SinceUJ! ™) < MBg, game (:n,R,) is better
than game {:1",R,,) whenevem > 4MCy, WCr/WP:2. On the other hand, game
(0:n,Ryp) is better than game0(n,R,) if MBr > WCrMCy/(2/nMCy WCT —

* We assume here the worst case scenario wiéngy, <y {|WW;|} = 1. If a better lower bound
can be guaranteed, a similar analysis taking it into accfmliiotvs.
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n(WPe + WCr)), for small enough/(%%Re) and S Re) arbitrarily close to MBr,.

In order to show a scenario where game [".R,,) is better, we assume now that
MPyy, > 2MCy. Then, under this assumptiopg < 1/2. The following claim that
makes use of this fact will be useful.

Claim. For gamel: 1", let Pc(n) denote the probability that the majority out of
workers cheat. If the probability that a worker cheatpds< 3, thenP¢(n + 2) <
Pc (n)

Proof. LetP¢(n, > 1) be the probability that, out of workers, the number of cheaters
exceed the number of honest workers by more than one (i.kasit 3 given that we
consider only odd number of worker®,(n,= 1) by exactly one, an®4(n,= 1)
be the probability that the number of honest workers exceeditimber of cheaters by
exactly one. ThenP¢(n + 2) = Pe(n,> 1)(p2 + (1 — pc)?) + Pe(n,= 1)(p% +
2pc(1 — pe)) + Pg(n, = 1)p3. Boundingpc the claim follows.

From the previous claim, given th&. = 1/2 for po = 1/2, we conclude that

P¢ < 1/2. Using thatpe < 1/2, Pe < 1/2, andMPyy, > 2MC), the utility of the
master for gamelf1™,R,,) is

qn 1 qn
U](\}'l 7Rm) ZgMBR _p§}11 7Rm)MCV

1 qn .
_ 5(1 _pg}ll 7Rm))MPW _ ns(l.l ,Rm)
1 qn 1
=5 MBr —p R ey, — 5 MPyw
1 mn qn
+ 5pg}ll 7Rm)MPW _ nS(l.l ,Rm)

1 S
>3 (MBr — MPy) - nS1:" Rm),

As shown before, gamé (n,R,) is better than game0( n,Ry) when MBr <
WCrMCy [ (24/nMCy WCr — n(WP: + WCr)). Comparing gamesl(: 1", R,)
and 0:n,R,) when WCr < /MCyWCr/n — WPe < MBg, we have(MBr —
MPy)/2 — nSW1"Re) > MBr — 2./nMCy, WCr + nWPc. Therefore, game
(1:1™,Ry) is better whenever

WCr < (117", Rm) <2 /w
n

1
— %(MBR + Mpw) — WPe (4)

All three conditions are feasible simultaneously for bigegh M C),, therefore there
exists a scenario for which game (",R,,) is better. Notice that under the aforemen-
tioned condition, for game)(n,R,) to be better, i.en > 4MC\, WCr/ WPe?, it must
be true thatWP; > 2,/ MC\ WC7r /n and the inequality (4) does not hold.
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4.3 Computational Issues

In previous sections, a mechanism for the master to choaseggayoff models, and
appropriate values qgf,, for different scenarios was designed (based on Algorithm 1)
A natural question is what is the computational cost of usimgh mechanism. In ad-
dition to simple arithmetical calculations, there are tvinds of relevant computations
required: binomial probabilities and verification of cotimis for Nash equilibria. Both
computations are-th degree polynomial evaluations and can be carried ongushy

of the well-known numerical tools [17] with polynomial asptotic cost. These numer-
ical methods yield only approximations, but all these claftons are performed either
to decide in which case the parameters fit in, or to assignuevalp,,, or to compare
utilities. Given that these evaluations and assignments wbtained in the design as
inequalities or restricted only to lower bounds, it is enfotig choose the appropriate
side of the approximation in each case. Regarding the catipoal resources that the
workers require to carry out these calculations, noticettteachoice ofy, in the mech-
anism only yields a unique NE. Then, in order to make the caatfmn feasible to the
workers, the master sends together with the task a ceréiffizatving such equilibrium.
Such a certificate is the value pf, payoff values, game, and payoff model, which is
enough to verify uniqueness.

5 Conclusions

In this paper we consider computational systems in which stengrocessor assigns
tasks for execution to rational workers. We have defined #real model and cost-
parameters, and we have proposed and analyzed several gzahélse master can
choose to play in order to achieve high reliability at lowtc@ased on our game anal-
ysis, we have designed appropriate algorithmic mecharfisrig/o realistic scenarios
of these kinds of systems.

For future work we plan to design more complex mechanismgevhere than
one parameter at a time is tunable by the master, and corwtiger realistic scenar-
ios where our work can be applied. It would also be intergstinconsider the case
where the workers and/or the master do not have completeniiation of all the sys-
tem parameters. Another interesting research directioo sgudy trade-offs between
reliability and cost in distributed systems with both sélf@d destructively malicious
workers.
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W= {Wi,..., Wi}

set of worker groups

M master processor
S;={c,C} set of pure strategies available to grddifp
Su = {V,V} |setof pure strategies of the master
s strategy profile (a mapping from players to pure strategies)
Si strategy used by grouyy’; in the strategy profile
SM strategy used by the master in the strategy prefile
S_g strategy used by each player Bt in the strategy profile
S—M strategy used by each player but the master in the strategijepr
w? payoff of groupW; for the strategy profile
ms payoff of the master for the strategy profile
P probability that grougV; uses strategy;
Dsas probability that the master uses strategy
o mixed strategy profile (a mapping from players to prob. distver pure strategie
oi probability distribution over pure strategies used by @l in o
oM probability distribution over pure strategies used by ttastar ino
fo ) probability distribution over pure strategies used by ealelger buti; in o
oM probability distribution over pure strategies used by gaelyer but the master in
Ui(siy0-3) expected utility of groug¥; with mixed strategy profiler

Uni (s$m,0-11)

expected utility of master with mixed strategy profile

supp(o:)

set of strategies of groufy/; with probability > 0 in o

supp(or)

set of strategies of the master with probabitity0 in o

Table 1. Game notation
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WPc

worker’s punishment for being caught cheating

wWCr

group’s cost for computing the task

WB4

worker’s benefit from master’s acceptance

MPyy

master’s punishment for accepting a wrong angwer

MCa

master’s cost for accepting the worker’s answe

MCy

master’s cost for verifying worker’'s answers

MBr

master’s benefit from accepting the right answer

Table 2. Payoffs

Equilibrium
Conditions Purong Unm Uw,
pc, pv
pv ((1 —:DEL)(MBR—) )
MC: wor - MCy — (1 — pc)nMCa)+ _
MC AT MPyy, ' WB 4+ WP (1 -pv)Pc (1 — py)(MBr(l — Pe)— WBa — WCT
MPywPe — nMC.4)
wor
wEarwes Spv <1
o, "hartie MCy =0 0 MBr — nMCa WB4 — WCr
0 <py
wc.
0<pv < e vrs (1—pv) WBA-
1, PPATETE | MOy = MPw + MCa | 1=py  |=pyMCy — (1 = pv)(MPyy + nMC.a)
py <1 pv WPc
Ve
0<pe < Ly
MEATMPW o WCr =0 P MBg (1 — Pc) — MPywPe — nMCa WB.A
pc <1
e (1 = Tljew pd)MBr — MCy—
oL Ty Spe <1 _
1| WOT = WBa + Whe 0 Zwewrew [ews p(cj)' —Whe
0 < pc ’
k
Micw, (1= &) Wr|MCa
MCy < MPyw + MCx
1,1 0 —MCy —WPc
WCr > WB4 + WPe
MCy =0
0,1 0 MBr — nMCa WB4 — WCr
WCr < WBA + WP
1,0 MCy > MPyw + MCx 1 —MPyy —nMC4 WBa

Table 3.Gamel:1", ModelsR ., andR. (and Gamd.:1 for n = 1)
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Equilibrium
Conditions Purong Um
Pc,pPv
pv((1 —pS)(MBR—) )
MCy,+MC » wor _ MCy — (1 — pe)nMC4)+ _
MC A+ MPyy * WB 4 WP (1 —pv)Pec (1 — py)(MBr(l — P¢)— py WPe
MPywPe)
WCr <
T < py <1
o, WPatWPe MC4 = MCy =0 0 MBr py WB4 — WCr
0 <py
wc.
0<pv < g Zvrs
1, WEA+WPe MCy = MPyy 1—py —MCy —py WP
py <1
MCy,+MC
0 <pec < 352
MEATMEW. g WCr =0 Pc MBr(1 — Pc) — MPywPe
pc <1
_ G _ _
MOWFMCA o g (1 =TIljew p¢” )MBr — MCy
MO 4 +MPyy, = o p
o 1| WO = WB4 + WPc 0 Z(WF,WT)EW HjEWF péJ). — WPe
pc
k
Micw, (1 —p&)|Wr|MCa
MCy < MPyy
1,1 0 — MOy —WPe
WCr > WBA + WPe
MCy = MC4 =0
0,1 0 MBr WBA — WCT
WCr < WBA + WPe
1,0 MCy > MPy 1 —MPyy

Table 4. Gamel:1", Model Ry (and Gaméd.:1 for n = 1)

(Game,Model) Equilibrium Purong U Uw;,
bc,pv
(11 Rm), (11 Ra) |0 < pe < gy phipyg Pe < 1PV =0| pc | MBr —pc(MBr + MPyw) — M4 WBA
(1:1,Rg) 0<pe< %pc <1.pv=0| pc MBr — pc(MBr + MPy) 0
(117 Rn), (11" Ra) | 0 < pe < goadipos pe < 1:Pv =0 Pe |MBr — Pe(MBr + MPw) —nMCa|  WBa
(11" Ry) 0<pe < griamd pe <1.pv =0| Pe MBr — Pc(MBg + MPy) 0
(00, Rom) pe =0, Wvﬂvﬂm <py <1 0 MBr — py MCy — nMCy |W;| WB.A
(0:n,Ry) pc=0,0<py <1 0 MBr — pyMCy —nMCxy |Wi| WB 4
(0:n,Rg) pe =0,0<py <1 0 MBr — py(MCy +nMC4) py |Wi| WBA

Table 5. SETI-like Scenario
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(Game,Model) Equilibrium Puyrong Um Uw,
pc,pv
(11, Ron), (1:1,R) ot wradrs | (1= pv)pe| MBr — pe(MBr + MPyw) — MCa WBA — WCr
(11, R ) LA wa e | (- pvpe MBr — pc(MBr + MPy) —pv WPe
(pv(1 —pe) + (1 —pv)(1 —Pc))MBr
(11" Ru), (1:1™,Ra) Mcffk{PW ' WBLViTWPC (1 =pv)Pc| —py MCy — (1 — pv)Pc MPyy WB4 — WCT
—(1 —pyvpc)nMCxy
(pv(1 —pe) + (1 —pv)(1 —Pc))MBr
(1:1", Rg) ,ﬁ,’gxiﬁfgx . WBLViTWPC (1 =pv)Pc| —py, MCy — (1 — py)Pc MPyy —pv WP
—pv(1 —pc)nMCu
(01, Roun) 0, W‘VW‘%% <py <1 0 MBr — py MCy — nMCu |W;| WBA — WCr
(O:n,Ra) 0. rwrwr Wy < Pv <1 0 MBg — pyMCy — nMCa |Wi| WBA4 — WCr
(O:n.Ryg) 0. rwwr Wy < Pv <1 0 MBr — py(MCy +nMC4) py|Wi| WB4 — WOT

Table 6. Contractor Scenario




