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Abstract. In this work, using a game-theoretic approach, cost-sensitive mecha-
nisms that lead to reliable Internet-based computing are designed. In particular,
we consider Internet-based master-worker computations, where a master proces-
sor assigns, across the Internet, a computational task to a set of potentially un-
trusted worker processors and collects their responses. Workers may collude in
order to increase their benefit.
Several game-theoretic models that capture the nature of the problem are ana-
lyzed, and algorithmic mechanisms that, for each given set of cost and system
parameters, achieve high reliability are designed. Additionally, two specific real-
istic system scenarios are studied. These scenarios are a system of volunteering
computing like SETI, and a company that buys computing cycles from Internet
computers and sells them to its customers in the form of a task-computation ser-
vice. Notably, under certain conditions, non redundant allocation yields the best
trade-off between cost and reliability.

Keywords: Internet-based computing, Mechanism design, Game theory, Task exe-
cution, Fault-tolerance, Rational players, Collusion.

1 Introduction

Motivation. As traditional one-processor machines have limited computational re-
sources, and powerful parallel machines are very expensiveto obtain and maintain, the
Internet is emerging as the computational platform of choice for processing complex
computational jobs. Several Internet-oriented systems and protocols have been designed
to operate on top of this global computation infrastructure; examples include Grid sys-
tems [7, 31] and the “@home” projects [2], such as SETI [19] (aclassical example

⋆ This research was supported in part by Comunidad de Madrid grant S-0505/TIC/0285; Spanish
MEC grant TIN2005-09198-C02-01; EU IST #15964 (AEOLUS); EUMarie Curie European
Reintegration Grant IRG 210021; NSF grant CCF 0632838; and the University of Cyprus. A
preliminary version of this work appears in the Proceedingsof the 7th IEEE International Sym-
posium on Network Computing and Applications (NCA 2008), pages 315–324, Cambridge,
MA, 2008.
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of volunteering computing). Although the potential is great, the use of Internet-based
computing (also referred as P2P computing–P2PC [10, 32]) islimited by the untrust-
worthiness nature of the platform’s components [2,12]. Letus take SETI as an example.
In SETI, data is distributed for processing to millions of voluntary machines around the
world. At a conceptual level, in SETI there is a machine, callit the master, that sends
jobs, across the Internet, to these computers, call them theworkers. These workers exe-
cute and report back the result of the task computation. However, these workers are not
trustworthy, and hence might report incorrect results. Usually, the master attempts to
minimize the impact of these bogus results by assigning the same task to several work-
ers and comparing their outcomes (that is,redundanttask allocation is employed [2]).

In this paper, Internet-based master-worker computationsare studied from a game-
theoretic point of view. Specifically, these computations are modeled as games where
each worker chooses whether to behonest(that is, compute and return the correct task
result) or acheater(that is, fabricate a bogus result and return it to the master). Addition-
ally, cost-sensitive mechanisms (algorithms) that provide the necessary incentive for the
workers to truthfully compute and report the correct resultare designed. The objective
is to maximize the probability of the master of obtaining thecorrect result while min-
imizing its cost (or alternatively, increasing its benefit). In particular, we identify and
propose mechanisms for two paradigmatic applications. Namely, a volunteering com-
puting system as the aforementioned SETI where computing processors are altruistic,
and a second scenario where a company distributes computingtasks among contractor
processors that get an economic reward in exchange.

Background and Prior/Related Work. Prior examples of game theory in distributed
computing include work on Internet routing [20, 21, 28], resource/facility location and
sharing [11, 14], containment of viruses spreading [22], secret sharing [1, 16], and task
computations [32]. For more discussion on the connection between game theory and
computing we refer the reader to the survey by Halpern [15] and the book by Nisan et
al. [25].

In traditional distributed computing, the behavior of the system components (i.e.,
processors) is characterized a priori as either good or bad,depending on whether they
follow the prescribed protocol or not. In game theory, processors are assumed to act
on their ownself-interestand they do not have an a priori established behavior. Such
processors are usually referred asrational [1,12]. In other words, the processors decide
on how to act in an attempt to increase their own benefit, or alternatively to lower their
own cost.

In algorithmic mechanisms design[1, 8, 24, 26], games are designed to provide the
necessary incentives so that processors’ interests are best served by acting “correctly.”
The usual practice is to provide some reward (resp. penalty)should the processors (resp.
do not) behave as desired. The design objective is to force a desired uniqueNash equi-
librium (NE) [23], i.e., a strategy choice by each game participant such that none of
them has incentive to change it.

In [9, 18] reliable master-worker computations have been considered by redundant
task-allocation. In these works probabilistic guaranteesof obtaining the correct result
while minimizing the cost (number of workers chosen to perform the task) are also
shown. However, a traditional distributed computing approach is used, in which the
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behavior of each worker is predefined. In this paper, much richer payoff parameters are
studied and the behavior of each worker is not predefined, introducing new challenges
that naturally drive to a game-theoretic approach.

Two other related works [4, 30] where the worker behavior is predefined consider
collusion in desktop grid computing. In both proposals, thegoal is to identify colluders
by means of an statistical analysis that requires the processors to compute multiple
times. In the present paper, we study the more challenging problem of dealing with
collusion when each processor computes only once.

Master-worker computations in a game-theoretic model havebeen studied be-
fore [32]. In that paper, the master can audit the results returned by rational workers with
a tunable probability. Bounds for that audit probability are computed to guarantee that
workers have incentives to be honest in three scenarios: redundant allocation with and
without collusion1, and single-worker allocation. They conclude that, in their model,
single-worker allocation is a cost-effective mechanism specially in presence of collu-
sion. In our work, similar conclusions are extracted under certain system parameters
even in the presence of weaker types of collusion. Additionally, our work complements
that work in various ways, such as studying more algorithms and games, including
a richer payoff model, or considering probabilistic cheating. Finally, useful trade-offs
between the benefit of the master and the probability of accepting a wrong result are
shown for the one-round protocols proposed.

Distributed computation in presence of selfishness was alsostudied within the scope
of Combinatorial Agenciesin Economics [3]. The computation is carried out as a game
of complete information among rational players. The goal inthat work is to study how
the utility of the master is affected if the equilibria spaceis limited to pure strategies. To
that extent, the computation of a few Boolean functions is evaluated. If the parameters of
the problem yield multiple mixed equilibrium points, it is assumed that workers accept
one “suggested” by the master.

A somewhat related work is [5] in which they face the problem of bootstrapping a
P2P computing system, in the presence of rational peers. Thegoal is to incentive peers
to join the system, for which they propose a scheme that mixeslottery psychology
and multilevel marketing. In our setting, the master could use their scheme to recruit
workers. We assume in this paper that enough workers are willing to participate in the
computation.

Framework. We consider a distributed system consisting of a master processor that as-
signs a computational task to a set of workers to compute and return the task result2. It
is assumed that the master has the possibility of verifying whether the value returned by
a worker is the correct result of the task. It is also assumed that verifying an answer is
more efficient than computing the task [13] (e.g.,NP -complete problems ifP 6= NP ),
but the correct result of the computation is not obtained if the verification fails. There-
fore, by verifying, the master does not necessarily obtain the correct answer (e.g., when

1 Cooperation among various workers concealed from the master.
2 The tasks considered in this work are assumed to have a uniquesolution.
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all workers cheat)3. As in [5, 32], workers are assumed to be rational and seek to max-
imize their benefit, i.e., they are not destructively malicious. We note that this assump-
tion can conceptually be justified by the work of Shneidman and Parks [29] where they
reason on the connection of rational players–of algorithmic mechanism designs–and
workers in realistic P2P systems. Furthermore, we do not consider non-intentional er-
rors produced by hardware or software problems.

The general protocol used by master and workers is the following. The master pro-
cess assigns the task ton workers. Each worker processori cheats with probabilityp(i)

C

and the master processor verifies the answers with some probability pV . If the mas-
ter processor verifies, it rewards the honest workers and penalizes the cheaters. If the
master does not verify, it accepts the answer returned by themajority of workers. How-
ever, it does not penalize any worker given that the majoritycan be actually cheating.
Instead, the master rewards workers according to one of the three following models.
Either the master rewards the majority only (Reward ModelRm), or the master rewards
all workers independently of the returned value (Reward ModelRa), or the master does
not reward at all (Reward ModelR∅).

The model used in this paper comprises the following form of collusion (that covers
realistic types of collusions such as Sybil attacks [6]). Workers form colluding groups.
Within the same group workers act homogeneously, i.e., either all choose to cheat, or
all choose to be honest, perhaps randomizing their decisionby tossing a unique coin.
In the case that, within the group, all workers choose to be honest, then only one of
them computes the task, and all of them return that result to the master (in this way they
avoid the cost of all of them executing the task). In the case that all workers choose to
cheat, then they simply agree on a bogus result and send that to the master. In addition,
we assume that all “cheating groups” return the same incorrect answer. Since the master
accepts the majority, this behavior maximizes the chances of cheating the master. Being
this the worst case, it subsumes models where cheaters do notnecessarily return the
same answer. Note that this behavior can be viewed also as a form of collusion. We
also assume that if a worker does not perform the task, then itis (almost) impossible
to guess the correct answer (i.e., the probability is negligible). The master, of course, is
not aware of the collusions.

Given the protocol above, the game is defined by a set of parameters that include
rewards to the workers that return the correct value and punishments to the workers
that cheated (that is, returned the incorrect result and “got caught”). Hence, the game is
played between the master and the workers, where the first wants to obtain the correct
result with a desired probability, while obtaining a desired utility value (in expectation),
and the workers decide whether to be honest or cheaters, depending on their expected
utility gain or loss. In this paper, we design several games and study the conditions
under which unique Nash equilibria (NE) are achieved. Each NE results in a different
benefit for the master and a different probability of accepting an incorrect result. Thus,
the master can choose some game conditions so that a unique NEthat best fits its goals
is achieved.

3 Alternatively, one might assume that the master verifies by simply performing the task and
checking the answers of the workers. Our analysis can easilybe modified to accommodate this
different model.
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Contribution. The main contributions of this paper are:

1. The identification of a collection of realistic payoff parameters that allow to model
Internet-based master-worker computational environments in game theoretic terms.
These parameters can either be fixed exogenously (they are system parameters) or be
chosen by the master.

2. The definition of four different games that the master can force to be played: (a)
A game between the master and a single worker, (b) a game between the master and
a worker, playedn times (with different workers), (c) a game with a master andn
workers, and (d) a game ofn workers in which the master participates indirectly. Games
(c) and (d) consider collusions, game (a) considers no collusions as there is only one
worker, and game (b) only considers singleton groups, whereall cheaters return the
same value. Together with the three reward models defined above, we have overall
defined twelve games among which the master can choose the most convenient to use
in each specific context.

3. The analyses of all the games under general payoff models, and the characterization
of conditions under which a unique Nash Equilibrium point isreached for each game
and each payoff-model. These analyses lead to mechanisms that the master can run to
trade cost and reliability.

4.The design of mechanisms for two specific realistic scenarios, to demonstrate the util-
ity of the analysis. These scenarios reflect, in their fundamental elements, (a) a system of
volunteering computing like SETI, and (b) a company that buys computing cycles from
Internet computers and sells them to its customers in the form of a task-computation
service. Our results show that for (a) the best choice is non-redundant allocation,even
with only singleton colluding groups. Furthermore, in this case we show that to obtain
always the correct answer it is enough to verify with arbitrarily small probability. As an
example of the results obtained in (b), if the master only chooses the number of work-
ersn, we show that, againeven with only singleton colluding groupsthe best choice is
non-redundant allocation. However, in order to achieve correctness always, the required
probability of verifying can now be large.

Paper Structure. In Section 2 we provide basic definitions to be used throughout the
paper. In Section 3 we present and analyze the games proposed. In Section 4 the mech-
anisms for the two realistic scenarios are designed. Finally, Section 5 presents conclu-
sions and future lines of work.

2 Definitions

Game Definition. Game participants are referred as workers and master. In order to
define the game played in each case, we follow the customary notation used in game
theory. Given that this notation is repeatedly used throughout the paper, we summarize
it in Table 1 for clarity. We assume that the master always chooses an odd number of
workersn. In order to model collusion among workers, we view the set ofworkers
as a set of non-empty subsetsW = {W1, . . . , Wℓ} such that

∑ℓ

i=1 |Wi| = n and
Wi ∩ Wj = ∅ for all i 6= j, 1 ≤ i, j ≤ ℓ. We refer to each of these subsets as
a group of workersor a group for short. We also refer to groups and the master as



6

players. Workers in the same group act homogeneously, i.e., either all choose to cheat,
or all choose to be honest, perhaps randomizing their decision by tossing a unique coin.
Workers acting individually are modeled as a group of size one. It is assumed that the
size or composition of each group is known only to the membersof the group, but all
cheating groups return the same incorrect answer.

A strategy profile is defined as a mapping from players to pure strategies, denoted
ass. For succinctness, we express a strategy profile as a collection of individual strat-
egy choices together with collective strategy choices. Forinstance,si = C, sM =
V , R−iM , F−iM , T−iM stands for a strategy profiles where groupWi chooses strategy
C (to cheat), the master chooses strategyV (to verify), a setR−iM of groups (where
groupWi and the master are not included) randomize their strategy choice with prob-
ability pC ∈ (0, 1), a setF−iM of groups deterministically choose strategyC, and a
setT−iM of groups deterministically choose strategyC (to be honest). For games with
one worker and the master, the strategy profile is composed only by their choices. For
example,mCV stands for the master’s payoff in the case that the worker cheated and the
master verified. We require that, for each groupWi, p

(i)
C = 1− p

(i)

C
and, for the master,

pV = 1−pV . For games where we only have one group or all groups use the same prob-

ability, we will expressp(i)
C (resp.p(i)

C
) simply bypC (resp.pC). Whenever the strategy

is clear from the context, we will refer to the expected utility of groupWi asUi, and
for the master asUM . In the games studied the master and the workers have complete
information on the algorithm and the parameters involved, except on the number and
the composition of the colluding groups.

Equilibrium Definition. We define now precisely the conditions for the equilibrium.
In this context, the probability distributions are not independent among members of a
group. Furthermore, the formulation of equilibrium conditions among individual work-
ers would violate the very definition of equilibrium since the choice of a worker does
change the choices of other workers. Instead, equilibrium conditions are formulated
among groups. Of course, the computation of an equilibrium might not be possible
since the size of the groups is unknown. But, finding appropriate conditions so that the
unique equilibrium is the same independently of that size, the problem can be solved.
An important point to be made is that the majority is evaluated in terms of number
of single answers. Nevertheless, this fact has an impact on the payoffs of each player,
which in this case is a whole group, but not in the correctnessof the equilibrium formu-
lation.

Recall from [27] that for any finite game, a mixed strategy profile σ∗ is a mixed-
strategy Nash equilibrium(MSNE) if, and only if, for each playerπ (either a worker
group or the master),

Uπ(sπ , σ∗
−π) = Uπ(s′π, σ∗

−π), ∀sπ, s′π ∈ supp(σ∗
π), (1)

Uπ(sπ , σ∗
−π) ≥ Uπ(s′π, σ∗

−π),

∀sπ, s′π : sπ ∈ supp(σ∗
π), s′π /∈ supp(σ∗

π). (2)

In words, given a MSNE with mixed-strategy profileσ∗, for each playerπ, the
expected utility, assuming that all other players do not change their choice, is the same
for each pure strategy that the player can choose with positive probability inσ∗, and it
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is not less than the expected utility of any pure strategy with probability zero of being
chosen inσ∗. A fully MSNE is an equilibrium with mixed strategy profileσ where, for
each playerπ, supp(σπ) = Sπ.

Payoffs Definition.We detail in Table 2 the payoff definitions that will be used through-
out the paper. All the parameters in this table are non-negative. Notice that we split the
reward to a worker intoWBA andMCA, to model the fact that the cost of the master
might be different than the benefit of a worker. In fact, in some models they may be
completely unrelated. Among the parameters involved, we assume that the master has
the freedom of choosing the cheater penaltyWPC and the worker reward for comput-
ing MCA. By tuning these parameters and choosingn, the master achieves the desired
trade-off between correctness and cost. Given that the master does not know the com-
position of groups (if there is any), benefits and punishments are applied individually to
each worker, except for the cost for computing the taskWCT which is shared among
all workers belonging to the same group (as it was explained in the Introduction).

3 Equilibria Analysis

In the following sections, different games are studied according to the participants in-
volved. In order to identify the parameter conditions for which there is an NE, Equa-
tions (1) and (2) of the MSNE definition are instantiated in each particular game, with-
out making any assumptions on the payoffs. We call thisthe general payoffs model.
From these instantiations, we obtain conditions on the parameters (payoffs and prob-
abilities) that would make such equilibrium unique. Finally, we introduce the reward
models described before on those conditions, so that we can compare among all games
and models in Section 4.

3.1 Game1:1: One Master - One Worker

We start the analysis by considering the game between the master and only one worker.
Hence, collusions can not occur and we refer to the group justas “the worker.”

General Payoffs Model.In order to evaluate all possible equilibria, all the different
mixes have to be considered. In other words, according with the range of values that
pC andpV can take, we can have fully MSNE, partially MSNE, or pure-strategies NE.
More specifically, bothpC andpV can take values either0, 1, or in the open interval
(0, 1). Depending on these values, the different conditions in Equations (1) and (2)
have to be achieved in order to have an equilibrium. Hence, conditions onpC andpV
for each equilibrium can be obtained from these equations asdetailed below.

– CasepC ∈ (0, 1), pV ∈ (0, 1): From Equation (1), there is a fully MSNE if
UM (V , pC) = UM (V , pC) andUW (C, pV) = UW (C, pV) simultaneously. These
equations determine the value ofpC andpV in the MSNE as follows.

pCmCV + (1 − pC)mCV = pCmCV + (1 − pC)mCV

pC =
mCV − mCV

mCV − mCV − mCV + mCV

.
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pVwCV + (1 − pV)wCV = pVwCV + (1 − pV)wCV

pV =
wCV − wCV

wCV − wCV − wCV + wCV

.

– CasepC = 0, pV ∈ (0, 1): For the worker, Equation (1) trivially holds. From Equa-
tion (2),UW (C, pV) ≥ UW (C, pV) must hold, i.e.,

pVwCV + (1 − pV)wCV ≥ pVwCV + (1 − pV)wCV .

Then, ifwCV + wCV − wCV − wCV > 0,

pV ≥ wCV − wCV

wCV + wCV − wCV − wCV
.

Else, ifwCV + wCV − wCV − wCV < 0,

pV ≤ wCV − wCV

wCV + wCV − wCV − wCV
.

For the master, from Equation (1),UM (V , pC) = UM (V , pC) must hold, which
implies

pCmCV + (1 − pC)mCV = pCmCV + (1 − pC)mCV

mCV = mCV ,

sincepC = 0. So, under these conditions, there is an MSNE.
– CasepC = 1, pV ∈ (0, 1): For the worker, Equation (1) trivially holds. From Equa-

tion (2), it must be true thatUW (C, pV) ≥ UW (C, pV). So,

pVwCV + (1 − pV)wCV ≥ pVwCV + (1 − pV)wCV .

Then, ifwCV + wCV − wCV − wCV > 0,

pV ≥ wCV − wCV

wCV + wCV − wCV − wCV

.

Else, ifwCV + wCV − wCV − wCV < 0,

pV ≤ wCV − wCV

wCV + wCV − wCV − wCV

.

For the master, from Equation (1),UM (V , pC) = UM (V , pC), and sincepC = 1,

pCmCV + (1 − pC)mCV = pCmCV + (1 − pC)mCV

mCV = mCV .

So, under these conditions, there is an MSNE.
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– CasepC ∈ (0, 1), pV = 0: For the master, Equation (1) trivially holds. From Equa-
tion (2), it must hold thatUM (V , pC) ≥ UM (V , pC). Then,

pCmCV + (1 − pC)mCV ≥ pCmCV + (1 − pC)mCV .

Then, ifmCV + mCV − mCV − mCV > 0,

pC ≥ mCV − mCV

mCV + mCV − mCV − mCV
.

Else, ifmCV + mCV − mCV − mCV < 0,

pC ≤ mCV − mCV

mCV + mCV − mCV − mCV
.

For the worker, from Equation (1),UW (C, pV) = UW (C, pV), and given thatpV =
0 we have that

pVwCV + (1 − pV)wCV = pVwCV + (1 − pV)wCV

wCV = wCV .

So, under these conditions, there is an MSNE.
– CasepC ∈ (0, 1), pV = 1: For the master, Equation (1) trivially holds. From Equa-

tion (2),UM (V , pC) ≥ UM (V , pC) and

pCmCV + (1 − pC)mCV ≥ pCmCV + (1 − pC)mCV .

Then, ifmCV − mCV − mCV + mCV > 0,

pC ≥ mCV − mCV

mCV − mCV − mCV + mCV

.

Else, ifmCV − mCV − mCV + mCV < 0,

pC ≤ mCV − mCV

mCV − mCV − mCV + mCV

.

For the worker, from Equation (1),UW (C, pV) = UW (C, pV) and sincepV = 1,

pVwCV + (1 − pV)wCV = pVwCV + (1 − pV)wCV

wCV = wCV .

So, under these conditions, there is an MSNE.

Finally, the following are conditions to have a pure-strategies NE with profiles.

– Cases = {C,V}: mCV ≥ mCV andwCV ≥ wCV .
– Cases = {C,V}: mCV ≥ mCV andwCV ≥ wCV .
– Cases = {C,V}: mCV ≥ mCV andwCV ≥ wCV .
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– Cases = {C,V}: mCV ≥ mCV andwCV ≥ wCV .

On the other hand, the expected utility of the master and the worker in any equilib-
rium areUM = pCpVmCV +(1−pC)pVmCV +pC(1−pV)mCV +(1−pC)(1−pV)mCV
andUW = pCpVwCV + pC(1− pV)wCV + (1− pC)pVwCV + (1− pC)(1− pV)wCV re-
spectively, and the probability of accepting the wrong answer isPwrong = (1− pV)pC .
Reward Model Rm. Recall that in this model we assume that when the master does
not verify, it rewards only the majority. Given that there isonly one worker, in this case
the master rewards always. Under the payoff model detailed in Table 2, the payoffs are

mCV = −MCV wCV = −WPC

mCV = MBR − MCV − MCA wCV = WBA − WCT

mCV = −MPW − MCA wCV = WBA

mCV = MBR − MCA wCV = WBA − WCT

Replacing appropriately, we obtain the conditions for equilibrium, probability of ac-
cepting the wrong answer, and utilities for each case.

Reward Model Ra. In this model we assume that if the master does not verify, it
rewards all workers independently of the answer. Hence, theanalysis is identical to the
previous case.

Reward Model R∅. Recall that in this model we assume that if the master does not
verify, it does not reward the worker. Hence, under the payoff model detailed in Table 2,
the payoffs are

mCV = −MCV wCV = −WPC

mCV = MBR − MCV − MCA wCV = WBA − WCT

mCV = −MPW wCV = 0

mCV = MBR wCV = −WCT

Replacing appropriately, we obtain the conditions for equilibrium, probability of
accepting the wrong answer, and utilities for each case, as we will see in the next sec-
tion. The probability of accepting the wrong result, the master utility for each case, the
conditions for equilibrium, and the workers utility for thereward modelsRm andR∅

can be obtained from Tables 3 and 4 by replacingn = 1.

3.2 Game1:1n: n Games One to One

In this section it is considered the case where the master runsn instances of the one to
one game analyzed in the previous section. Workers are assumed to compute the equi-
librium as if they were playing alone against the master. Hence, given the assumption
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that the players are rational and compute the equilibrium todecide what to do, the con-
sideration of collusion is meaningless for this game. Hence, all groups are assumed
to have exactly one member; we do assume however that cheaters return the same in-
correct value (to obtain worst case analysis). Games where workers know about the
existence of other workers and they can collude to fool the master are studied later.
Given the equilibria computed in Section 3.1, the master runsn instances of that game,
one with each of then workers, choosing to verify or not with probabilitypV only once.
Additionally, when paying while not verifying, the master rewards all or none according
with the one-to-one game.

General Payoffs Model.Since this game is just a multiple-instance version of the pre-
vious game, under the payoff model detailed in Table 2, the conditions for equilibria
and the utility of a worker are the same as in Section 3.1. However, the expected utility
of the master and the probability of accepting the wrong result change. In order to give
those expressions, we define the following notation. LetW be the set of partitions in
two subsets(F, T ) of W , i.e.,W = {(F, T )|F ∩ T = ∅, F ∪ T = W}. F is the set of
workers that cheat andT the set of honest workers. We also define master payoff func-
tionsms : {0, 1, . . . , n} → R, that still depend on the number of workers that cheat or
not, but are not necessarily justn times the individual payoff of a1:1 game (reflecting
the fact that the cost may include some fixed amount for uniqueverification or unique
cost of being wrong). For the sake of clarity, we will denote the probability that the
majority cheats asPC . Then, the probability that the majority cheats, the probability of
being wrong, and the master’s utility are

PC =
∑

(F,T )∈W
|F |>|T |

∏

f∈F

p
(f)
C

∏

t∈T

(1 − p
(t)
C ),

Pwrong =(1 − pV)PC ,

UM =pV
∑

(F,T )∈W

∏

f∈F

p
(f)
C

∏

t∈T

(1 − p
(t)
C )mV+

(1 − pV)
∑

(F,T )∈W

∏

f∈F

p
(f)
C

∏

t∈T

(1 − p
(t)
C )mV .

Respectively, wheremV = mCV(|F |) + mCV(|T |) andmV = mCV(|F |) + mCV(|T |).
Reward Models.In this game, we assume that the cost of verificationMCV is indepen-
dent of the number of workers (since all cheating workers return the same value) and
that, as long as some worker is honest, upon verification the master obtains the correct
result. It is important to note that, under this assumption,the probability of obtaining the
correct result is not1 − Pwrong, given that if the master verifies but all workers cheat,
the master does not obtain the correct result. Recall that the master playsn instances
of a one-to-one game, thus, depending on the model, it must reward every worker if
not verifying independently of majorities. We summarize the probability of accepting
the wrong result, the master utility for each case, the conditions for equilibrium, and
the workers utility for the reward modelsRm andR∅ in Tables 3 and 4 respectively
(Tables 3 and 4 give also these values for Game1:1 replacing appropriatelyn = 1).
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3.3 Game0:n: No Master in the Game

Another natural generalization of the game of Section 3.1 isto consider a game in which
the master assigns the task ton workers that play the game among them. Intuitively, it
can be seen that, in case of not verifying, workers will compete to be in the majority
(to persuade the master). Given that workers know the existence of the other workers,
including collusions in the analysis is in order. The question of how the participation of
the master in the game would affect the results obtained in this section is addressed in
Section 3.4.

General Payoffs Model.In order to analyze this game, it is convenient to partition the
set of groups. More precisely, consider disjoint setsF , T andR, such thatF ∪ T ∪
R = W , as follows.F is the set of groups that choose to cheat as a pure strategy, i.e.,
F = {Wi|Wi ∈ W ∧p

(i)
C = 1}. T is the set of groups that choose not to cheat as a pure

strategy, i.e.,T = {Wi|Wi ∈ W ∧p
(i)
C = 0}. R is the set of groups that randomize their

choice, i.e.,R = {Wi|Wi ∈ W ∧p
(i)
C ∈ (0, 1)}. LetF−i = F \{Wi}, T−i = T \{Wi},

andR−i = R\{Wi}. LetR−i be the set of partitions in two subsets(RF , RT ) of R−i,

i.e.,R−i = {(RF , RT )|RF ∩RT = ∅∧RF ∪RT = R−i}. LetE[w
(i)
s ] be the expected

payoff of groupWi for the strategy profiles, taking the expectation over the choice of
the master of verifying or not. Then, for each groupWi ∈ W and for each strategy
profiles−i = R−i, F−i, T−i, we have

Ui(s−i, si = C) =
∑

(RF ,RT )∈R−i

∏

Wf∈RF

p
(f)
C

∏

Wt∈RT

(1 − p
(t)
C )E[w

(i)
F−i∪RF ,
T−i∪RT ,

si=C

],

Ui(s−i, si = C) =
∑

(RF ,RT )∈R−i

∏

Wf∈RF

p
(f)
C

∏

Wt∈RT

(1 − p
(t)
C )E[w

(i)
F−i∪RF ,
T−i∪RT ,

si=C

].

In order to find conditions for a desired equilibrium, we study

∆Ui(s) = Ui(s−i, si = C) − Ui(s−i, si = C).

For clarity, defineNF−i =
∑

S∈F−i∪RF
|S|, NT−i =

∑

S∈T−i∪RT
|S|, and, for

each partition(RF , RT ) ∈ Ri, let ∆w
(i)
C = E[w

(i)
si=C ] − E[w

(i)

si=C
], whenNF−i −

NT−i > |Wi|, ∆w
(i)

C
= E[w

(i)
si=C ] − E[w

(i)

si=C
], whenNT−i − NF−i > |Wi|, and

∆w
(i)
X = E[w

(i)
si=C ] − E[w

(i)

si=C
], when|NF−i − NT−i| < |Wi|. Given that the payoff

depends only on the outcome majority, we have
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∆Ui(s) =

∆w
(i)
C

∑

(RF ,RT )∈R−i

NF−i−NT−i>|Wi|

∏

Wf∈RF

p
(f)
C

∏

Wt∈RT

(1 − p
(t)
C )+

∆w
(i)
X

∑

(RF ,RT )∈R−i

|NF−i−NT−i|<|Wi|

∏

Wf∈RF

p
(f)
C

∏

Wt∈RT

(1 − p
(t)
C )+

∆w
(i)

C

∑

(RF ,RT )∈R−i

NT−i−NF−i>|Wi|

∏

Wf∈RF

p
(f)
C

∏

Wt∈RT

(1 − p
(t)
C ). (3)

Restating the equilibrium conditions of Equations (1) or (2) in terms of Equation (3),
for each groupi ∈ R that does not choose a pure strategy, the equilibrium condition is
∆Ui(s) = 0; for each groupi ∈ F (i.e., that chooses to cheat as a pure strategy) the
condition is∆Ui(s) ≥ 0; and for each groupi ∈ T , it must hold that∆Ui(s) ≤ 0.

Lemma 1. Given a game as defined, if∆w
(i)
C ≥ ∆w

(i)
X ≥ ∆w

(i)

C
for every group

Wi ∈ W , then there is no unique equilibrium whereR 6= ∅ (i.e, all groups decide
deterministically).

Proof. For the sake of contradiction, assume there is a unique equilibrium σ for which
R 6= ∅ and∆w

(i)
C ≥ ∆w

(i)
X ≥ ∆w

(i)

C
for every groupWi ∈ W . Then, for every group

Wi ∈ R, ∆Ui(s) = 0 must be solvable. If∆w
(i)
C ≥ 0, for all Wi ∈ R, there would be

also an equilibrium where all groups inR choose to cheat andσ would not be unique,
which is a contradiction. Consider now the case where there exists someWi ∈ R such
that∆w

(i)
C < 0. Then, it must hold that|R| > 1, otherwise∆Ui = 0 is false forWi.

Given that|R| > 1, the probabilities given by the summations in Equation (3) for Wi

are all strictly bigger than zero. Therefore, given that∆Ui = 0 must be solvable, at
least one of∆w

(i)
X > 0 and∆w

(i)

C
> 0 must hold, which is also a contradiction with

the assumption that∆w
(i)
C ≥ ∆w

(i)
X ≥ ∆w

(i)

C
.

In the following sections, conditions to obtain unique equilibria under different pay-
off models are studied. In all these models it holds that∆w

(i)
C ≥ ∆w

(i)
X ≥ ∆w

(i)

C
for all

Wi ∈ W . Then, by Lemma 1, there is no unique equilibrium whereR 6= ∅. Regarding
equilibria whereR = ∅, unless the task assigned has a binary output (the answer canbe
negated), a unique equilibrium where all groups choose to cheat is not useful. Then, we
make∆w

(i)
C < 0, ∆w

(i)
X < 0 and∆w

(i)

C
< 0 for all Wi ∈ W so that∆Ui ≥ 0 has no

solution and no group can choose to cheat as a pure strategy. Thus, the only equilibrium
is for all the groups to choose to be honest, which solves∆Ui ≤ 0. Therefore,p(i)

C = 0,
∀Wi ∈ W , and hencePwrong = 0.
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Reward ModelRm. Replacing appropriately the payoffs detailed in Table 2, weobtain
for any groupWi ∈ W

∆w
(i)
C = −pV |Wi|(WPC + 2WBA) + |Wi|WBA + WCT ,

∆w
(i)
X = −pV |Wi|(WPC + WBA) + WCT ,

∆w
(i)

C
= −pV |Wi|WPC − |Wi|WBA + WCT .

To make∆w
(i)
C < 0 we want

pV >
|Wi|WBA + WCT

|Wi|(WPC + 2WBA)
, ∀Wi ∈ W.

And the expected utilities are then

UM = MBR − pVMCV − nMCA

UWi
= |Wi|WBA − WCT , for eachWi ∈ W.

Reward ModelRa. Similarly, for any groupWi ∈ W ,

∆w
(i)
C = −pV |Wi|(WPC + WBA) + WCT ,

∆w
(i)
X = −pV |Wi|(WPC + WBA) + WCT ,

∆w
(i)

C
= −pV |Wi|(WPC + WBA) + WCT .

Then, the condition to obtain the desired unique equilibrium and the expected utili-
ties are

pV >
WCT

|Wi|(WPC + WBA)
, ∀Wi ∈ W,

UM = MBR − pVMCV − nMCA,

UWi
= |Wi|WBA − WCT , for eachWi ∈ W.

Reward ModelR∅. Again, for any groupWi ∈ W ,

∆w
(i)
C = −pV |Wi|(WPC + WBA) + WCT ,

∆w
(i)
X = −pV |Wi|(WPC + WBA) + WCT ,

∆w
(i)

C
= −pV |Wi|(WPC + WBA) + WCT .

And the condition to obtain the unique equilibrium and the expected utilities are

pV >
WCT

|Wi|(WPC + WBA)
, ∀Wi ∈ W,

UM = MBR − pV(MCV + nMCA),

UWi
= pV |Wi|WBA − WCT , for eachWi ∈ W.
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In order to maximize the master utility we would like to design games wherepV
is small. Therefore, we look for a lower bound onpV . It is easy to see that, in all of
the three payoff models, the worst case lower bound is given by the group of minimum
size. Although at a first glance this fact seems counterintuitive, it is not surprising due
to the following two reasons. On one hand, colluders are likely to be in the majority,
but the unique equilibrium occurs when all workers are honest. On the other hand, the
extra benefit that workers obtain by colluding is not againstthe master interest since it
is just a saving in computation costs.

3.4 Game1:n: One Master - n Workers

We now observe how the conditions obtained in the previous game are modified if the
master also participates as a player. The equilibria analysis regarding groups follows
the same lines as in Section 3.3. However, now Equations (1) and (2) have to be applied
to the master, as follows.

General Payoffs Model.Recall thatR is the set of groups that randomize their choice.
LetR be the set of partitions in two subsets(RF , RT ) of R, i.e.,R = {(RF , RT )|RF ∩
RT = ∅ ∧ RF ∪ RT = R}. Then, for the master,

UM (R, F, T, sM = V) =
∑

(RF ,RT )∈R

∏

f∈RF

p
(f)
C

∏

t∈RT

(1 − p
(t)
C )mF∪RF ,

T∪RT ,
sM=V

UM (R, F, T, sM = V) =
∑

(RF ,RT )∈R

∏

f∈RF

p
(f)
C

∏

t∈RT

(1 − p
(t)
C )mF∪RF ,

T∪RT ,

sM =V

.

From Equation (1), ifpV ∈ (0, 1), the MSNE condition isUM (R, F, T, sM =
V) = UM (R, F, T, sM = V). From Equation (2), ifpV = 0 the condition is
UM (R, F, T, sM = V) ≤ UM (R, F, T, sM = V), and if pV = 1 the condition is
UM (R, F, T, sM = V) ≥ UM (R, F, T, sM = V).

The MSNE conditions for groups are the same as in Section 3.3.Hence, the con-
ditions obtained for each of the reward models are the same. However, additional con-
ditions are obtained from the master-utility conditions asfollows. As in Section 3.3,
the desired unique MSNE occurs whenpC = 0. Using that, in the master-utility con-
ditions we get for the reward modelRm that if pV < 1, MBR − MCV − nMCA =
MBR − nMCA, and if pV = 1, MBR − MCV − nMCA ≥ MBR − nMCA. There-
fore, in any case it must holdMCV = 0. For the reward modelRa, the master-utility
conditions give, ifpV < 1, MBR − MCV − nMCA = MBR − nMCA and if
pV = 1, MBR − MCV − nMCA ≥ MBR − nMCA. Therefore, again,MCV = 0.
Finally, for the reward modelR∅, the master-utility conditions give ifpV < 1,
MBR − MCV − nMCA = MBR and if pV = 1, MBR − MCV − nMCA ≥ MBR.
Therefore,MCV = MCA = 0. Hence, to achieve the goal of forcing the groups to be
honest,in this game, verifying must be free for the master.
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4 Algorithmic Mechanisms

In this section two realistic scenarios in which the master-worker model considered
could be naturally applicable are proposed. For these scenarios, we determine appropri-
ate games and parameters to be used by the master to maximize its benefit.

The basic protocol (mechanism) used by the master to accept the correct task result
while maximizing its benefit is as follows: Given the payoffsparameters (these can
either be fixed exogenously or be chosen by the master), the master sends the task (to be
computed), the game to be played, the probability of verification pV , the payoff model
to be used, and a certificate to the workers. After receiving the replies from all workers,
and independently of the distribution of the answers, the master processor chooses to
verify the answers with the probabilitypV . If the answers were not verified it accepts the
result of the majority. Then, it applies the corresponding reward model. The protocol is
detailed in Algorithm 1.

Algorithm 1 : Master algorithm

send (task, game,pV , payoff modelR, certificate) to all workers1

upon receiving all answersdo2

verify the answers with probabilitypV3

if the answers were not verifiedthen4

accept the majority5

end6

apply the reward model7

endupon8

Hence, the master, given the payoff parameters, can determine the game and pa-
rameters (including the value ofpV ) to force the workers into a unique NE, that would
result to the correct task result (with high probability) while maximizing the master’s
benefit. Examples of specific parameters (including the value of pV ) and games such
that the master can achieve this are analyzed in the following subsections.

For computational reasons, the master also sends a certificate to the workers. The
certificate includes the strategy that if the workers play will lead them to the unique NE,
together with the appropriate data to demonstrate this fact. More details for the use of
the certificate are given in Section 4.3.

4.1 SETI-like Scenario

The first scenario considered is a volunteering computing system such as SETI@home,
where users accept to donate part of their processors idle time to collaborate in the
computation of large tasks. In this case, we assume that workers incur in no cost to
perform the task, but they obtain a benefit by being recognized as having performed
it (possibly in the form of prestige, e.g, by being included on SETI’s top contributors
list). Hence, we assume thatWBA > WCT = 0. The master incurs in a (possibly
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small) costMCA when rewarding a worker (e.g., by advertising its participation in the
project). As assumed in the general model, in this model the master may verify the
values returned by the workers, at a costMCV > 0. We also assume that the master
obtains a benefitMBR > MCA if it accepts the correct result of the task, and suffers a
costMPW > MCV if it accepts an incorrect value.

Under these constraints, the equilibria for games1:1 and1:1n collapse to one single
equilibrium point. Also, since game1:n requires free verification (MCV = 0) for the
equilibrium to be unique, it cannot be used in this scenario.The different applicable
cases are summarized in Table 5. In this table it can be observed that in games1:1 and
1:1n the equilibrium is achieved with any value ofpC in an interval. The master has
no way to force the specific value ofpC that a worker uses within the interval. And, in
particular, it cannot forcepC = 0 (i.e.,Pwrong = 0). Additionally, looking at the master
utility, all games haveUM < MBR. However, in game (0:n,R∅) the master can make
UM arbitrarily close toMBR by settingpV arbitrarily small. (Notice that the utility of
a worker will be arbitrarily small likewise, but given that workers are volunteering this
is not a problem.)In conclusion, the game (0:n,R∅) with n = 1 (|W | = |Wi| = 1)
and very smallpV is the best choice in this scenario, since it satisfiesPwrong = 0 and
UM ≈ MBR.

4.2 Contractor Scenario

The second scenario considered is a company that buys computational power from In-
ternet users and sells it to computation-hungry costumers.In this case the company
pays the users an amountS = WBA = MCA for using their computing capabilities,
and charges the consumers another amountMBR > MCA for the provided service.
Since the users are not altruistic in this scenario, we assume that computing a task is
not free for them (i.e.,WCT > 0), and they must have incentives to participate (i.e.,
UWi

> 0, ∀Wi ∈ W ). As in the previous case, we assume that the master verifies and
has a cost for accepting a wrong value, such thatMPW > MCV > 0. Again, under
these assumptions, the equilibria for games1:1 and1:1n collapse to unique equilibria
and game1:n can not be used. The different cases are summarized in Table 6. Observe
that there are cases in this table in which the group has negative expected utilityUWi

.
Given that in this scenario workers are not altruistic, theywill not accept to participate in
such a game. This fact immediately rules out games (1:1,R∅) and (1:1n,R∅). Similarly,
this restriction forces the master to use a value ofpV > WCT /|Wi|WBA, ∀Wi ∈ W
in game (0:n,R∅). Finally, comparing games (0:n,Rm) and (0:n,Ra), it can be seen that
the master would never choose the former, because the lower bound ofpV is smaller
in the latter while the rest of expressions are the same, which leads to a larger master
utility.

In this scenario, beyond choosing the game and number of workers as in the previ-
ous one, we assume that the master can also choose the rewardWBA to the workers for
correctly computing the task, and the punishmentWPC if they are caught returning an
incorrect value. All possible combined variations of theseparameters yield a huge num-
ber of cases to be considered. In this work, we assume that themaster only can choose
one of these parameters, while the rest are predefined. A study of richer combinations
is left for future work.
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The following notation is used for clarity. Whenever a parameter may be different
among different games being compared, a super-index indicates the game to which the
parameter belongs. For instance,U

(i,j)
M is the utility of the master for game(i, j). MCA

andWBA are referred to as simplyS (= MCA = WBA).
A simple observation of games (0:n,Ra) and (0:n,R∅) leads to find that in both

cases it is convenient for the master to choose the smallest possible value ofpV . For
this reason, in the following we assume in these games valuesp

(0:n,Ra)
V = WCT

WPC+S
+

γ(0:n,Ra) andp
(0:n,R∅)
V = WCT

S
+ γ(0:n,R∅), for arbitrarily smallγ(0:n,Ra) > 0 and

γ(0:n,R∅) > 0 4.

Tunable n: Regarding games (1:1,Rm) and (1:1n,Rm), in this case the master has no
control overpC or pV , since they are completely defined by the application parameters.
Hence, the probability of accepting a wrong answer might be arbitrarily close to1, even
for game (1:1n,Rm), becausePC grows withn if pC > 1/2 as shown in Claim 4.2.
Given that we want to design a mechanism that can be applied toany setting, we rule
out these games for this case. In the case thatn is tunable, the benefit of the master
in games (0 : n,Ra) and (0 : n,R∅) decreases asn increases. Hence for these games
the master choosesn = 1. (So,|W | = |Wi| = 1.) Additionally, these games provide
Pwrong = 0. Out of these games, (0 : n,Ra) is better iff WCT +WCT MCV/S >
S+WCT MCV/(WPC+S).

Tunable WPC : Comparing games (0 : n,Ra) and (0 : n,R∅), U
(0:n,Ra)
M = MBR −

p
(0:n,Ra)
V MCV −nS = MBR−WCT MCV/(S+WPC

(0:n,Ra))−nS−γ(0:n,Ra)MCV

andU
(0:n,R∅)
M = MBR − p

(0:n,R∅)
V MCV − p

(0:n,R∅)
V nS = MBR − WCT MCV/S −

nWCT − γ(0:n,R∅)MCV − γ(0:n,R∅)nS. Thus, game (0 : n,R∅) is better iff n >
WCT MCV/S(S − WCT ) for small enoughγ(0:n,R∅). Otherwise, (0:n,Ra) is better
for small enoughγ(0:n,Ra) and large enoughWPC

(0:n,Ra). As argued in the previous
case, in this case the master has no control overpC . Although the master can reduce
WPC to increasepV , it can not makepV arbitrarily close to 1 to reducePwrong in case
pC is big (and consequentlyPC). Then, some cases might lead to a big probability of
accepting the wrong answer. Thus, games (1:1,Rm) and (1:1n,Rm) are ruled out from
consideration.

Tunable S ∈ (WCT ,MBR): In this casen is fixed, and given that we do not make
any assumptions about its magnitude, we evaluate game1:1 while evaluating game1:
1n for an arbitraryn. Using calculus, the utility of the master for game (0 :n,Ra) is
maximum whenS(0:n,Ra)

max = ±
√

MCVWCT /n − WPC . Due to the aforementioned
constraints, only values in the interval(WCT ,MBR) are valid forS. Assuming then

thatWCT < S
(0:n,Ra)
max < MBR, the utilities areU (0:n,Ra)

M (S = S
(0:n,Ra)
max ) = MBR −

2
√

nMCVWCT +nWPC andU
(0:n,R∅)
M = MBR−WCT MCV/S(0:n,R∅)−nWCT −

γ(0:n,R∅)(MCV + nS(0:n,R∅)). SinceU
(1:1n,Rm)
M ≤ MBR, game (0 :n,Ra) is better

than game (1:1n,Rm) whenevern > 4MCVWCT /WPC
2. On the other hand, game

(0 :n,R∅) is better than game (0 :n,Ra) if MBR > WCT MCV/(2
√

nMCVWCT −
4 We assume here the worst case scenario whereminWi∈W {|Wi|} = 1. If a better lower bound

can be guaranteed, a similar analysis taking it into accountfollows.
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n(WPC +WCT )), for small enoughγ(0:n,R∅) andS(0:n,R∅) arbitrarily close toMBR.
In order to show a scenario where game (1 : 1n.Rm) is better, we assume now that
MPW ≥ 2MCV . Then, under this assumption,pC ≤ 1/2. The following claim that
makes use of this fact will be useful.

Claim. For game1 :1n, let PC(n) denote the probability that the majority out ofn
workers cheat. If the probability that a worker cheats ispC ≤ 1

2 , thenPC(n + 2) ≤
PC(n).

Proof. LetPC(n, > 1) be the probability that, out ofn workers, the number of cheaters
exceed the number of honest workers by more than one (i.e., atleast 3 given that we
consider only odd number of workers),PC(n, = 1) by exactly one, andPC(n, = 1)
be the probability that the number of honest workers exceed the number of cheaters by
exactly one. Then,PC(n + 2) = PC(n, > 1)(p2

C + (1 − pC)2) + PC(n, = 1)(p2
C +

2pC(1 − pC)) + PC(n, = 1)p2
C. BoundingpC the claim follows.

From the previous claim, given thatPC = 1/2 for pC = 1/2, we conclude that
PC ≤ 1/2. Using thatpC ≤ 1/2, PC ≤ 1/2, andMPW > 2MCV , the utility of the
master for game (1:1n,Rm) is

U
(1:1n,Rm)
M ≥1

2
MBR − p

(1:1n,Rm)
V MCV

− 1

2
(1 − p

(1:1n,Rm)
V )MPW − nS(1:1n,Rm)

=
1

2
MBR − p

(1:1n,Rm)
V MCV − 1

2
MPW

+
1

2
p
(1:1n,Rm)
V MPW − nS(1:1n,Rm)

≥1

2
(MBR − MPW ) − nS(1:1n,Rm).

As shown before, game (0 : n,Ra) is better than game (0 : n,R∅) whenMBR <
WCT MCV/(2

√
nMCVWCT − n(WPC + WCT )). Comparing games (1 : 1n,Rm)

and (0:n,Ra) whenWCT <
√

MCVWCT /n − WPC < MBR, we have(MBR −
MPW )/2 − nS(1:1n,Rm) ≥ MBR − 2

√
nMCVWCT + nWPC . Therefore, game

(1:1n,Rm) is better whenever

WCT ≤ S(1:1n,Rm) ≤2

√

MCVWCT

n

− 1

2n
(MBR + MPW ) − WPC (4)

All three conditions are feasible simultaneously for big enoughMCV , therefore there
exists a scenario for which game (1:1n,Rm) is better. Notice that under the aforemen-
tioned condition, for game (0:n,Ra) to be better, i.e.,n > 4MCVWCT /WPC

2, it must
be true thatWPC > 2

√

MCVWCT /n and the inequality (4) does not hold.
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4.3 Computational Issues

In previous sections, a mechanism for the master to choose games, payoff models, and
appropriate values ofpV for different scenarios was designed (based on Algorithm 1).
A natural question is what is the computational cost of usingsuch mechanism. In ad-
dition to simple arithmetical calculations, there are two kinds of relevant computations
required: binomial probabilities and verification of conditions for Nash equilibria. Both
computations aren-th degree polynomial evaluations and can be carried out using any
of the well-known numerical tools [17] with polynomial asymptotic cost. These numer-
ical methods yield only approximations, but all these calculations are performed either
to decide in which case the parameters fit in, or to assign a value topV , or to compare
utilities. Given that these evaluations and assignments were obtained in the design as
inequalities or restricted only to lower bounds, it is enough to choose the appropriate
side of the approximation in each case. Regarding the computational resources that the
workers require to carry out these calculations, notice that the choice ofpV in the mech-
anism only yields a unique NE. Then, in order to make the computation feasible to the
workers, the master sends together with the task a certificate proving such equilibrium.
Such a certificate is the value ofpV , payoff values, game, and payoff model, which is
enough to verify uniqueness.

5 Conclusions

In this paper we consider computational systems in which a master processor assigns
tasks for execution to rational workers. We have defined the general model and cost-
parameters, and we have proposed and analyzed several gamesthat the master can
choose to play in order to achieve high reliability at low cost. Based on our game anal-
ysis, we have designed appropriate algorithmic mechanismsfor two realistic scenarios
of these kinds of systems.

For future work we plan to design more complex mechanisms where more than
one parameter at a time is tunable by the master, and considerother realistic scenar-
ios where our work can be applied. It would also be interesting to consider the case
where the workers and/or the master do not have complete information of all the sys-
tem parameters. Another interesting research direction isto study trade-offs between
reliability and cost in distributed systems with both selfish and destructively malicious
workers.
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W = {W1, . . . , Wℓ} set of worker groups

M master processor

Si = {C, C} set of pure strategies available to groupWi

SM = {V,V} set of pure strategies of the master

s strategy profile (a mapping from players to pure strategies)

si strategy used by groupWi in the strategy profiles

sM strategy used by the master in the strategy profiles

s−i strategy used by each player butWi in the strategy profiles

s−M strategy used by each player but the master in the strategy profile s

w
(i)
s payoff of groupWi for the strategy profiles

ms payoff of the master for the strategy profiles

p
(i)
si

probability that groupWi uses strategysi

psM
probability that the master uses strategysM

σ mixed strategy profile (a mapping from players to prob. distrib. over pure strategies)

σi probability distribution over pure strategies used by group Wi in σ

σM probability distribution over pure strategies used by the master inσ

σ−i probability distribution over pure strategies used by eachplayer butWi in σ

σ−M probability distribution over pure strategies used by eachplayer but the master inσ

Ui(si, σ−i) expected utility of groupWi with mixed strategy profileσ

UM (sM , σ−M ) expected utility of master with mixed strategy profileσ

supp(σi) set of strategies of groupWi with probability> 0 in σ

supp(σM) set of strategies of the master with probability> 0 in σ

Table 1.Game notation
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WPC worker’s punishment for being caught cheating

WCT group’s cost for computing the task

WBA worker’s benefit from master’s acceptance

MPW master’s punishment for accepting a wrong answer

MCA master’s cost for accepting the worker’s answer

MCV master’s cost for verifying worker’s answers

MBR master’s benefit from accepting the right answer

Table 2.Payoffs

Equilibrium

pC , pV

Conditions Pwrong UM UWi

MCV
MCA+MPW

,
WCT

WBA+WPC
(1 − pV)PC

pV ((1 − pn
C )MBR−

MCV − (1 − pC)nMCA)+
(1 − pV )(MBR(1 − PC)−

MPWPC − nMCA)

WBA − WCT

0,

WCT
WBA+WPC

≤ pV < 1

0 < pV

MCV = 0 0 MBR − nMCA WBA − WCT

1,
0 < pV ≤

WCT
WBA+WPC

pV < 1

MCV = MPW + MCA 1 − pV −pVMCV − (1 − pV)(MPW + nMCA)
(1−pV)WBA−

pVWPC

0 ≤ pC ≤
MCV

MCA+MPW

pC < 1

, 0 WCT = 0 PC MBR(1 − PC) − MPWPC − nMCA WBA

MCV
MCA+MPW

≤ pC < 1

0 < pC

, 1 WCT = WBA + WPC 0

(1 −
Q

j∈W
p
(j)
C )MBR − MCV−

P

(WF ,WT )∈W

Q

j∈WF
p
(j)
C ·

Q

k∈WT
(1 − p

(k)
C )|WT |MCA

−WPC

1, 1
MCV ≤ MPW + MCA

WCT ≥ WBA + WPC

0 −MCV −WPC

0, 1
MCV = 0

WCT ≤ WBA + WPC

0 MBR − nMCA WBA − WCT

1, 0 MCV ≥ MPW + MCA 1 −MPW − nMCA WBA

Table 3.Game1:1n, ModelsRm andRa (and Game1:1 for n = 1)
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Equilibrium

pC , pV

Conditions Pwrong UM UWi

MCV+MCA
MCA+MPW

, WCT
WBA+WPC

(1 − pV)PC

pV((1 − pn
C )MBR−

MCV − (1 − pC)nMCA)+
(1 − pV)(MBR(1 − PC)−

MPWPC)

−pVWPC

0,

WCT
WBA+WPC

≤ pV < 1

0 < pV

MCA = MCV = 0 0 MBR pVWBA − WCT

1,
0 < pV ≤

WCT
WBA+WPC

pV < 1

MCV = MPW 1 − pV −MCV −pVWPC

0 ≤ pC ≤
MCV+MCA
MCA+MPW

pC < 1

, 0 WCT = 0 PC MBR(1 − PC) − MPWPC 0

MCV+MCA
MCA+MPW

≤ pC < 1

0 < pC

, 1 WCT = WBA + WPC 0

(1 −
Q

j∈W
p
(j)
C )MBR − MCV−

P

(WF ,WT )∈W

Q

j∈WF
p
(j)
C ·

Q

k∈WT
(1 − p

(k)
C )|WT |MCA

−WPC

1, 1
MCV ≤ MPW

WCT ≥ WBA + WPC

0 −MCV −WPC

0, 1
MCV = MCA = 0

WCT ≤ WBA + WPC

0 MBR WBA − WCT

1, 0 MCV ≥ MPW 1 −MPW 0

Table 4.Game1:1n, ModelR∅ (and Game1:1 for n = 1)

(Game,Model) Equilibrium Pwrong UM UWi

pC, pV

(1:1,Rm), (1:1,Ra) 0 ≤ pC ≤
MCV

MCA+MPW
, pC < 1 , pV = 0 pC MBR − pC(MBR + MPW) − MCA WBA

(1:1,R∅) 0 ≤ pC ≤
MCV+MCA
MCA+MPW

, pC < 1 , pV = 0 pC MBR − pC(MBR + MPW) 0

(1:1n ,Rm), (1:1n ,Ra) 0 ≤ pC ≤
MCV

MCA+MPW
, pC < 1 , pV = 0 PC MBR − PC(MBR + MPW) − nMCA WBA

(1:1n,R∅) 0 ≤ pC ≤
MCV+MCA
MCA+MPW

, pC < 1 , pV = 0 PC MBR − PC(MBR + MPW) 0

(0:n,Rm) pC = 0,
WBA

WPC+2WBA
< pV ≤ 1 0 MBR − pVMCV − nMCA |Wi|WBA

(0:n,Ra) pC = 0, 0 < pV ≤ 1 0 MBR − pVMCV − nMCA |Wi|WBA

(0:n,R∅) pC = 0, 0 < pV ≤ 1 0 MBR − pV(MCV + nMCA) pV |Wi|WBA

Table 5.SETI-like Scenario
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(Game,Model) Equilibrium Pwrong UM UWi

pC , pV

(1:1,Rm), (1:1,Ra)
MCV

MCA+MPW
,

WCT
WBA+WPC

(1 − pV)pC MBR − pC(MBR + MPW) − MCA WBA − WCT

(1:1,R∅)
MCV+MCA
MCA+MPW

,
WCT

WBA+WPC
(1 − pV)pC MBR − pC(MBR + MPW) −pVWPC

(1:1n ,Rm), (1:1n ,Ra)
MCV

MCA+MPW
,

WCT
WBA+WPC

(1 − pV)PC

(pV(1 − pn
C ) + (1 − pV)(1 − PC))MBR

−pVMCV − (1 − pV)PCMPW

−(1 − pVpC)nMCA

WBA − WCT

(1:1n,R∅)
MCV+MCA
MCA+MPW

,
WCT

WBA+WPC
(1 − pV)PC

(pV(1 − pn
C ) + (1 − pV)(1 − PC))MBR

−pVMCV − (1 − pV)PCMPW

−pV(1 − pC)nMCA

−pVWPC

(0:n,Rm) 0,
|Wi|WBA+WCT

|Wi|(WPC+2WBA)
< pV ≤ 1 0 MBR − pVMCV − nMCA |Wi|WBA − WCT

(0:n,Ra) 0,
WCT

|Wi|(WPC+WBA)
< pV ≤ 1 0 MBR − pVMCV − nMCA |Wi|WBA − WCT

(0:n,R∅) 0,
WCT

|Wi|(WPC+WBA)
< pV ≤ 1 0 MBR − pV(MCV + nMCA) pV |Wi|WBA − WCT

Table 6.Contractor Scenario


