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Abstract. Position estimation is one of the classical problems in mobile
robotics. For instance, robots have to know where in the map they are
in order to use maps in any task involving navigation. Even in highly
dynamical environments such as the RoboCup competition the robot
behaviour or attitude depends on its position in the playground. The
goal of this paper is to compare two probabilistic localization methods
based on local vision for a mobile robot. The experimental set up is
based on the Aibo league of the RoboCup, where the robotic dogs major
sensor is the on-board camera. Two localization algorithms, Bayesian
and Montecarlo ones, have been implemented and compared, and their
behaviour studied in several situations. A simulator has been developed
which adds actuation noise to the commands ordered to the motors and
sensor errors to the images perceived. This way both algorithms use
exactly the same data collection to estimate the robot position.

1 Introduction: Localization sensors and techniques

In order to use a map the robot has to locate itself in the frame of reference of
the map, that way, it can use information of obstacles out of the current sensor
scope, plan paths through the non-visible environment, or just take decisions
according to its position.

Perception is a key element for localization. In fact, we can divide the so-
lutions to the localization problem between the ones which are just confident
in specialized localization sensors, and the ones which use indirect information.
Localization sensors provide explicit position information, local or global. For
instance, the encoders provide pulses proportional to the wheels displacement,
which allow us to estimate the robot position knowing the initial one. The dis-
advantage of these sensors is the odometric errors, which can be systematic and
non-systematic. Systematic errors are due to the robot and its sensors; they
are important because they accumulate as the robot moves, but can be easily
corrected by calibrating the system. Non-systematic errors are unpredictable as
they are due to the environmental conditions and therefore more difficult to fix.

Another type of localization sensor is the GPS (Global Positioning System)
sensor, widely used in outdoors applications. It uses a receiver of the radio signals
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from at least four satellites. Triangulation is used to get latitude, longitude
and height. Its main advantage is that it can provide good location metrics for
big areas. There are mainly two types of GPS errors: those derived form the
transmission of the radio signals and those due to the system configuration.

There are other localization strategies based on different methods, some of
them require environmental engineering such as the placement of active beacons,
passive marks, etc.. For instance, the use of marks consists in positioning beacons
in known places in a given map. Then, using either triangulation or trilateration
we obtain the robot pose (x, y, θ). Another localization technique is the scan
matching. It allows locating the robot by comparing sensor readings obtained as
the robot moves. It requires knowing the initial pose and although this method
can provide a very accurate estimate, it fails to recover when major localization
errors occur.

Another family of localization techniques include those which integrate the
information obtained from the robot sensors, non directly related to position. For
instance, some of them are based on the Kalman filtering [Welch02]. Given some
initial estimates, this filter allows the parameters of a model to be predicted, and
adjusted with each new measurement obtained, providing a dynamic estimate of
error at each update. It has been successfully used in various systems such as golf
lawn mowers [Kyriy02]. Its main drawback is that it cannot store multimodal
evidences of localization.

Fuzzy logic techniques have also been widely used to integrate position in-
formation, for instance in [Buschka00] a fuzzy localization method for a legged
robot is described. It relies on the observation of known landmarks using a cam-
era sensor and on the integration of the position information derived from these
observations into a fuzzy position grid. Main advantages of fuzzy calculus are
the limited computational cost and the ability to recover from large localization
errors.

Probabilistic algorithms have also been widely used to gather localization
information, and have proved very successful [Thrun00a] in many robotic envi-
ronments. This paper describes the implementation and the experiments made
using two of these probabilistic methods. The scenario is inspired in the Aibo
league where a robot with local vision moves in the RoboCup field.

The rest of the paper will be organized as follows: next section will be ded-
icated to detail the underlying theory of the two probabilistic methods used in
our experiments; in the third section the simulator used will be described; fourth
section presents the experiments carried out and fifth section analyzes the results
obtained summarizing the conclusions we have reached.

2 Probabilistic localization

Probabilistic localization has been widely used to solve the global localization
problem, i.e., where the initial position of the robot is unknown. It calculates the
probability of each possible position given some sensor readings and movement
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data provided by the robot. It copes with uncertainty and sensor errors and can
recover from major localization errors.

Its main drawback is the computational cost of keeping the history of the
probabilities (using Bayes’s rule) for all the possible locations in the map. Be-
cause of this limitation several sampling techniques have been probed, keeping
the power of the Bayes reasoning. In particular Montecarlo techniques, MCL,
have gained popularity recently [Thrun01,Montemerlo02]. In MCL, instead of
storing the probabilities for all the possible positions, a small number of repre-
sentative samples are randomly selected. Following three steps for predicting the
pose using actuation data, updating the samples probabilities using observation
data and resampling, the robot pose can be estimated in a much more efficient
way.

2.1 Bayes localization

Probabilities are held in cubes of probabilities that represent each possible posi-
tion in the playground. The ratio (3) used to keep the probability for each (x, y, θ)
is calculated applying Bayes’s rule and following the formulation developed at
[Margaritis98]:

Pposition(C(x,y,θ), t) = P (position/obs(t), data(t− 1)) (1)

rmap =
Pposition

1− Pposition
(2)

rmap(C(x,y,θ), t) =
robs

rapriori
∗ rmap(C(x,y,θ), t− 1) (3)

Initially, the probability is set to 0.5 for all positions in the cube (we don’t
know where the robot is). Then, when new values are combined using Bayes’s
rule, in order to avoid saturation we set the maximum probability to 0.999999
and the minimum to 0.000001. In order to use the images taken from the camera,
an observation model must be developed to translate that information into the
probability framework. In our case we defined p(position/obs) = e−d2

where d
is the difference between the ideal image at some location and the real one (4).
Such difference is defined as the mean distance from the beacons i in one image
to their corresponding ones j in the second image, being Bideal and Breal the
total number of beacons for each one of them.

d = ((
Bideal∑

i=1

di/Breal) + (
Breal∑
j=1

dj/Bideal))/2 (4)

2.2 MonteCarlo localization

We use the CONDENSATION algorithm as described in [Sáez02]. This algorithm
works with a population of samples Mt = {(ϕ1

t , ω
1
t ), (ϕ2

t , ω
2
t ), ...(ϕn

t , ωn
t )}. Each
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sample ϕt represents a possible pose of the robot, and has a probability ωt

associated. Initially, the probability is set to 0.5 for all samples (we don’t know
where the robot is). This population evolves as new motor commands and new
sensor observations are integrated, iterating a three steps loop:

1. Prediction phase: Given the action at−1 performed by the robot in t-1,
the predicted pose in t for each sample ϕi

t−1 ∈ Mt−1 is obtained by adding
some actuation noise. This way, we build a new set of N samples M̃t in t.

ϕ̃i
t = ϕi

t−1 + at−1 + (N(0, σx), N(0, σy), N(0, σθ)), i = 1, 2, ...N

2. Observations update phase: Given the observation vt performed by the
robot in t, the new probability ω̃i

t for each sample ϕi
t ∈ Mt is updated

according to the belief that the observation vt corresponds to the state ϕ̃i
t.

The observation model used was defined as p(position/obs) = e−d2/256 where
d is the distance in pixels between the ideal image and the real one (4).
To help the next resampling step to work properly, we set the maximum
probability to 0.95 and the minimum to 0.30.

ω̃i
t = p(ϕ̃i

t|vt), i = 1, 2, ...N

3. Resampling phase: In this step a new set of N samples Mt is built resam-
pling with substitution the set M̃t, in a way that each sample ϕ̃i

t is chosen
with a probability proportional to ω̃i

t. Finally the probabilities ωi
t of the

samples in Mt are normalized to satisfy
∑N

i−1ω
i
t = 1.

(ϕi
t, ω

i
t)←− Choose a sample from M̃t, i = 1, 2, ...N

As opposed to the Bayesian approach, there is no explicit history for the set
of samples; history is implicit to the new set of samples concentrated around the
most possible positions thanks to the resampling phase.

3 Simulator

The Simulator generates the required information for an off-line processing of
data by the localization algorithm. This allows us to control the robot movements
and to compare the Bayesian and MCL approaches. It simulates the movement
orders given to the robot platform, adding a Gaussian noise both in translation
and rotation. In addition, it simulates the images that the robot obtains through
its local camera. In particular, for a certain environment, it computes the ideal
image the robot would perceive given the map and the current robot position
and orientation.

Simulated images are arrays of 80 pixels, reflecting the presence of a beacon,
or not, and specifying its colour. The images are computed using a simple sensor
model for the camera: a cone with certain scope and depth (right picture on
Fig. 1). Two random sensor noises are added to ideal images before delivering
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them to the localization algorithm: offset (Poffset) and mutation (Pmutation).
Poffset adds offset noise that may displace the image a random number of pix-
els. Pmutation noise adds false positives and false negatives, flipping the pixel
value with certain probability. Noise probabilities, their amplitude and the sen-
sor model can be easily changed at will.
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Fig. 1. Sample map provided to the simulator (left) and camera model used (right)

Right picture of Fig. 1 shows the calculations to check if a beacon is in the
visual field of the camera. Given a visual field α and a scope L, the beacon
B is in the visual field of the camera if r < L and β ∈ [θ - α

2 , θ + α
2 ]. The

corresponding pixel is computed following:

pixel = 80 ∗ ((θ + α/2)− β)
α

for β ≤ (θ + (α/2)) (5)

pixel = 80− 80 ∗ (β − (θ − α/2))
α

for β > (θ + (α/2)) (6)

The environment is provided to the simulator through a map file which de-
scribes the white lines of the field and the position of the beacons and their
colours. The size, shape of the field and the number of beacons and their loca-
tions, can be easily changed by modifying the map file.

4 Experiments

Bayesian localization was implemented as shown in section 2, and the behaviour
of the algorithm was tested over the simulator. Typical localization error and exe-
cution time were measured. Figure 2 represents a typical run using the RoboCup
map shown in the left part of figure 1 (real dimension 290cmx240cm). The map
was tessellated in 58x48 cells, and the angle discretized in 360 values, having
5cmx5cmx1◦ cells. Therefore, we had 58x48x360=1,002,240 possible poses where
the robot could be located, held in what we called probability cubes. For each
possible 3D cell the algorithm stores and updates its likelihood given the set of
observations and motor actions.
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Fig. 2. Probability accumulation using Bayes’s rule

Such likelihood is shown on figure 2 in a greyscale, the darker the cell, the
lower its probability. For the sake of clarity we haven’t shown the probability
cube, but only the slot of the cube for the actual orientation of the robot in each
iteration. First, the left column shows the evidence stored at t − 1. The cen-
tral column indicates the sensor information or the actuation that takes place
in t. The right column results as the combination of the prior ones, and repre-
sents the state of the robot’s belief after incorporating sensor data or making a
move (translation and/or rotation); it becomes the left column in the following
iteration.

The top left slot represents the initial estimation. All the cells have the same
likelihood. After the first image, positions compatible with such observation
rise in probability. As can be seen in top right slot, one cone includes all the
compatible cells. After that, a robot forward movement of 10 cells causes the
corresponding displacement of the robot’s evidence, as can be noted in the second
row of figure 2. After the 45◦ turn shown in the fourth row, the robot sees the
C-beacon, which let it discriminate the most likely cells fusing with the prior
evidence, as displayed in the bottom right picture.

Typically, the Bayesian algorithm locates the robot in 2-4 iterations, which
takes 24-48 seconds long in a Pentium-III at 1.1 GHz. In addition, Bayesian
localization has proved to be very robust to actuation and sensor errors. Com-
bining all noises, which resembles the real scenario, it copes with 30% error
motor commands, Poffset < 0.2 and Pmutation < 0.001. In such realistic setting,
it delivers localization errors smaller than 2.5cm in x, y and 5◦ in orientation.

In addition, multiple experiments were carried out in order to test the algo-
rithm in many scenarios, and to study the effect of different parameters in its
performance. It has proved robustness to different observation model and diverse
maps. For instance a map similar to the Robocup one was provided, but chang-
ing the colour of the beacons to be bottom-up symmetrical. In such scenario the
algorithm managed to locate the robot in the same number of iterations, but
the differences in likelihood among the cells were smaller.
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The number of beacons was incremented and reduced to test its effect on
the performance. The intuition was confirmed: the more beacons, the shorter
it takes to locate the robot. The Bayesian algorithm degrades gracefully when
the number of beacons is decreased. It was also confirmed that the localization
improvement after a new observation depends more on the discriminative power
of the last image than on the previous history of the cells.

Montecarlo localization has been implemented using local vision only. Instead
of computing the probability of all plausible poses, a population of samples
evolves in time as new images are collected. The samples are relocated using
the information from the last image and they converge to the real location after
some iterations, as can be seen in the typical run shown in figure 3.

Fig. 3. Samples evolution using Montecarlo localization

For the Robocup map, this convergence can be noted in the dotted line of
figure 4. Left and central pictures show the standard deviation of the set of sam-
ples around its mean position in X and Y axes, respectively. The right picture
shows the standard deviation of the samples in the orientation θ, in particular in
the cos θ (to avoid considering 1◦ and 359◦ as very different angles). As new ob-
servations are collected the population reduces its dispersion, converging around
certain pose (x, y, θ). In order to check whether that pose is a good one or not,
the number of samples which are likely according to the last image vt is displayed
in figure 5. A sample ϕ̃ is considered likely if its likelihood p(ϕ̃|vt) > 0.8. It can
be seen that the percentage of likely samples in the population grows as more
observations are taken into account.

Typically, 13-16 iterations are required to locate the robot. Nevertheless,
those iterations are much faster than the Bayesian ones, as they take only 4
seconds long in the same machine. Regarding noise, Montecarlo localization has
proved to be more sensitive to actuation and sensor errors than the Bayesian
algorithm. Combining all noises, which resembles the real scenario, the algorithm
tolerates 10% error in motor commands, Poffset < 0.2 and Pmutation < 0.001.
For those settings in the RoboCup map shown in figure 1 it provides real location
of the robot with 10cm maximum deviation, and 0.12 in cos θ. The bigger the
noise, the further from real position is the mean value in the final sample set,
and fewer samples fall close to it.
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Fig. 4. Typical deviation of samples in x, y and cos θ

A meaningful parameter for the Montecarlo algorithm is the movement error
introduced to shift a little bit the samples after every ideal motor command. It
helps to avoid stall and to cope with sensor and motor errors. The bigger this
random movement, the more stable the algorithm is, although worse resolution
is achieved. The best results were obtained with a random movement of 15%.

To study how well the Montecarlo algorithm scales up, we tested over a
bigger map, a 580cmx480cm. The evolution of the samples is displayed in the
continuous line of figures 4 and 5. Initial deviations are naturally bigger as the
samples are spread over a larger area. Afterwards, the population gradually
converges to some position. After the same number of iterations the localization
error was bigger than the one obtained in the regular map in absolute terms,
but the ratio error/map size kept constant.

Fig. 5. Number of likely samples

Several tests were carried out to study the effect of other different parame-
ters in the performance of the algorithm. For instance, the probabilistic sensor
model was tuned to e−d2/256. The algorithm is very sensitive to this model, and
other sharper or softer functions didn’t work. In addition more beacons or more
samples don’t always help convergence or better resolution. A minimum number
of them has been identified in both cases, so under 500 samples or 12 beacons,
this algorithm doesn’t get good position guesses.
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5 Conclusions

Two probabilistic localization methods, Bayesian and MonteCarlo, have been
implemented and tested over a developed simulator for the Robocup environ-
ment. They only use the information provided by robot encoders and the images
obtained through its local vision. The aim of this work was to test both methods
before their implementation on real robots endowed with camera like the EyeBot
and the Aibo platforms.

First, a simulator has been developed. It simulates the motor commands
and image observations, adding noise to emulate real uncertainty. A simple cone
model was used to generate simulated one-dimensional images. Noise probabil-
ities, their amplitude and the sensor model can be easily changed at will. The
environment, including colour beacons, is provided to the simulator through a
map file.

Secondly, a Bayesian localization algorithm has been implemented discretiz-
ing the official 290x240cm playground into 58x48x360 cells of 5cmx5cmx1◦. This
cell size is similar to other approaches to the same scenario. This algorithm has
proved to be very robust to model parameters, motor and sensor errors, which
makes it suitable to cope with uncertainty in real sensors and actuators. De-
spite its good resolution it doesn’t scale up to larger environments. Because it
computes the probability of all plausible locations, the processing time grows
exponentially with the environment size. Such processing greediness prohibits
its implementation on board a robot, typically endowed with relatively slow
processors.

Thirdly, Montecarlo localization algorithm has also been implemented and
tested in the same environments. Compared to the Bayesian approach it speeds
up the localization process, making it easier to implement on board the robot
and for bigger environments. In addition, this method doesn’t require the tessel-
lation of the space, and so it potentially offers higher resolution than Bayesian
localization, when its parameters are tuned properly. Its main drawback is the
sensitivity to sensor and motor errors and its own parameters. A fine tuning is
required to get a robust behaviour for this algorithm.

We are working in implementing the Montecarlo algorithm on board an Aibo
robot, which lacks of good odometry and must rely on its camera for localiza-
tion. Another task we are working on, is the use of these algorithms with other
“sensors” like the wireless network cards; they measure the energy from different
access points at the laptop and can be used to estimate its position.
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[Sáez02] Sáez, J.M., Escolano, F.:
Localización global en mapas 3D basada en filtros de part́ıculas.
Proc. of III Workshop de Agentes F́ısicos, Murcia March 2002.

[Simmons95] Simmons, R., Koeing, S.:
Probabilistic Navigation in Partially Observable Environments.
Proc. of the Int. Joint Conference on Artificial Intelligence (IJCAI), July 1995.

[Thrun00a] Thrun, S.:
Probabilistic Algorithms in Robotics.
AI Magazine, 21(4):93-109, April 2000.

[Thrun01] Thrun, S., Fox, D., Burgard, W., Dellaert, F.:
Robust Montecarlo Localization for Mobile Robots.
Artificial Intelligence Journal, 2001.

[Welch02] Welch, G., Bishop, G.:
An Introduction to the Kalman Filter.
UNC-Chapel Hill, TR 95-041, March 11, 2002.


