
The MetricsGrimoire Database Collection
Jesus M. Gonzalez-Barahona

Universidad Rey Juan Carlos
GSyC/LibreSoft,

jgb @ gsyc.es

Gregorio Robles
Universidad Rey Juan Carlos

GSyC/LibreSoft,
grex @ gsyc.urjc.es

Daniel Izquierdo-Cortazar
Bitergia

dizquierdo @ bitergia.com

Abstract—The MetricsGrimoire system is composed by a set
of tools designed to retrieve data from repositories related
to software development. Their aim is to produce organized
databases suitable for easy querying with research and industrial
purposes. The data in those databases have a similar structure, to
easy cross-database studies, and can be enriched with information
such as linkage of the multiple identities of actors, or their
affiliation. This paper presents the general structure of those
databases, and a collection of up-to-date database dumps that
are publicly available. They correspond to two well-known
projects, OpenStack, and Eclipse, including data from source
code management repositories, issue tracking systems, mailing
lists, and code review systems.

I. DESCRIPTION

The data presented in this paper corresponds to the contents
of several repositories related to software development in
two major free / open source software projects: Eclipse and
OpenStack. The data has been checked and curated with
the help of developers from the corresponding projects, and
includes merged identities (unique identities that correspond
to persons which may use different identifiers in different
repositories) and affiliations (hiring organizations) for a large
fraction of developers. For both projects, the schemas used in
the databases are mainly the same, so they can be considered
homogeneous and a good base for comparative analysis.

In particular, the projects and repositories involved are:
• OpenStack1, with information from the following repos-

itories: source code management (git), issue tracking
(Launchpad), mailing lists (archived in mbox format), and
code review (Gerrit). See Table I for a summary of data
in the corresponding databases.

• Eclipse2, with information from the following repos-
itories: source code management (git), issue tracking
(Bugzilla), mailing lists (archived in mbox format), and
code review (Gerrit). See Table II for a summary of data
in the corresponding databases.

For each kind of repository and project, a database with
all information in repositories of that kind is maintained. For
example, the information for all git repositories in one project
is found in the database source_code.

The data is being made available as a part of the repro-
ducibility package for this paper3. For each project a directory

1http://openstack.org (March 29, 2015).
2http://eclipse.og (March 29, 2015).
3http://gsyc.es/∼jgb/repro/2015-msr-grimoire-data

TABLE I
OPENSTACK DATABASES

Repository Database Items

git source code 135 repositories
183,413 commits
3,836 authors

Launchpad tickets 55,044 tickets
635,895 updates
7,582 identities

Mailing lists mailing lists 15 lists
88,842 messages
4,399 posters

Gerrit reviews 119,989 code reviews
3,533 submitters

Affiliated identities 3,417

Organizations 237

TABLE II
NUMBER OF ITEMS IN ECLIPSE DATABASES

Repository Database Items

git source code 492 repositories
987,671 commits
3,753 authors

Bugzilla tickets 470,397 tickets
3,380,817 updates
51,629 identities

Mailing lists mailing lists 253 lists
386,034 messages
19,642 posters

Gerrit reviews 37,460 code reviews
1,033 submitters

Affiliated identities 3,074

Organizations 129

is provided (eclipse, openstack) with the four database
dumps whose names can be found in the “Database” column
in tables I and II, compressed using 7z.

II. RETRIEVAL

To retrieve the data, the following MetricsGrimoire tools
were used:

http://openstack.org
http://eclipse.og
http://gsyc.es/~jgb/repro/2015-msr-grimoire-data


• CVSAnalY4, to retrieve data from git repositories.
• Bicho5, to retrieve data from Bugzilla, Launchpad (issue

tracking) and Gerrit (code review) repositories.
• MailingListStats6, to retrieve data from mailing lists.
A description of how CVSAnalY, Bicho and MailingList-

Stats work, and the process they follow to retrieve, organize
and store the data can be found in [1]7.

The tools were run with standard options, to gather all the
data from the repositories, and store it in MySQL databases.
In addition, some extra tables are produced for adding infor-
mation about identities that correspond to the same person
(unique identities), and affiliation for most of the developers.
Those tables are maintained in part by some scripts that apply
some heuristics, an include information from the projects
themselves (such as affiliation documents maintained by the
corresponding Foundations). Manual screening of the data, and
verification with the project is done on a periodic basis.

For both projects the data is being gathered daily, and
updated database dumps produced several times per week.
These updated versions can be found at the database dump
repositories for Eclipse8 and OpenStack9.

The databases in the reproducibility package for this paper
are copies of the dumps corresponding to February 2nd
(Eclipse) and February 6th (OpenStack) 2015.

III. SCHEMA

The schemas of the databases are described in detail in
the Wiki area of the GitHub repositories for CVSAnalY,
Bicho, and MLStats (see links in section II). As examples,
simplified schemas of the Bicho (tickets) and CVSAnalY
(source_code) databases are provided in figures 1 and 2. A
preliminary version of the CVSAnalY schema was described
in [2].

In the case of issue tracking systems, two of them are found:
Launchpad in the case of OpenStack, Bugzilla in the case
of Eclipse. Although both can be modeled in general terms
using the basic Bicho schema, extra tables are needed to store
information particular for each of these systems. Those are the
ext tables in the databases.

Information from code review (Gerrit system) was retrieved
using Bicho, a tool designed to retrieve information from
issue tracking systems. This was possible thanks to the similar
structure of the information handled by issue tracking and code
review system. This approach, including some details about
how the Bicho database was used for storing information about
code reviews, and the structure of the Bicho database itself was
presented in [3].

4http://github.com/MetricsGrimoire/CVSAnalY (March 29, 2015).
5http://github.com/MetricsGrimoire/Bicho (March 29, 2015).
6http://github.com/MetricsGrimoire/MailingListStats (March 29, 2015).
7These tools are pre-existent to this paper, and were not developed specif-

ically for it. They allow for incremental data retrieval as well, which can be
used for the presented dataset.

8http://dashboard.eclipse.org/data sources.html (March 29, 2015).
9http://activity.openstack.org/dash/browser/data sources.html (March 29,

2015).

The basic ideas of how to store information about unique
identities (those that allow for merging the same identities of
a person) were described in [4].

The information about unique identities is stored in the
following tables:

• upeople. Table for storing information about each
unique identity, such as the canonical name that will be
used for it. This table is common for a whole project
(OpenStack or Eclipse), and stored in the CVSAnalY
(source_code) database.

• people. Table for storing information about each iden-
tity found in repositories, such as the canonical name for
the identity. Each database (corresponding to a kind of
repository) has one people table.

• people_upeople. Correspondence between regular
identities (those found in the repositories, stored in the
people table) and “unique” identities (corresponding
to a single person, stored in upeople). Each unique
identity may correspond to several regular identities.
Therefore, this table will have one row per each identity
that can be merged in the same unique identity. Each
database in the collection has one of these tables, for the
identities found in it.

• Identities in other tables. When any table needs to link
to an identity, it will use the corresponding identifier in
the people table. For example, the scmlog table in the
git database, which has an entry per commit, features two
links to people: the author identifier and the committer
identifier.

Information in people tables can be used as well to track
the same identity in several kinds of repositories. For example,
joe.smith@foo.com can be searched in all people
tables to know in which ones that identity was active.

When considering unique identities, the common upeople
table can be used to identify developers in any repositories,
by joining the people_upeople table.

The information about how developers are affiliated to
organizations is maintained by linking it to unique identities.
Each affiliation entry will in fact link a unique identity to
an organization during a certain time span. For a complete
landscape the following tables are involved, all of them unique
for a whole project, stored in the source_code database:

• companies. This table includes one entry per company,
with its information: for example, its canonical name.

• upeople. The same upeople table described above.
• upeople_companies. This table link unique identi-

fiers for developers with the organization to which they
are affiliated, including the starting and finishing date for
that affiliation as well.

Since the upeople table is linked to the identities found
in repositories, via the corresponding people_upeople ta-
bles, it can be joined to link companies to those identities. This
allows, for example, to find commits or messages authored by
people affiliated to a certain company.

http://github.com/MetricsGrimoire/CVSAnalY
http://github.com/MetricsGrimoire/Bicho
http://github.com/MetricsGrimoire/MailingListStats
http://dashboard.eclipse.org/data_sources.html
http://activity.openstack.org/dash/browser/data_sources.html


Fig. 1. Simplified schema of the Bicho (tickets) schema for Bugzilla.

IV. LIMITATIONS

There are several known issues which cause some problems
when analyzing the data:

• The information stored in both CVSAnalY databases cor-
respond to git repositories. However, there is an important
difference: in the case of OpenStack, all the information
really corresponds to git. Meanwhile, in the case of
Eclipse, the system started using CVS repositories, which
were later migrated to Subversion, and still later to
git. Therefore, a large fraction of the information really
conforms to the CVS and Subversion abstractions, which
are different from those in git. For example, CVS lacks
atomic commits, which means that each commit corre-
sponds to a change in a single file, while in Subversion
and git a single commit can perfectly include changes
to several files. The way of dealing with branches, for
example, is very different between CVS, Subversion and
git as well.

• If the upeople table for each project were perfect, each
entry would correspond to a real person. In general, due to
the inexact nature of the heuristics and data sources used
to maintain it, some duplicate (non unique) entries could
exist. With time, this table is refined with new unique
identities, allowing a more perfect merging of identities
corresponding to the same person. In the current version,
unique identities are only checked for developers, which
means that a very large fraction of the authors in the
git repositories are tracked, and correctly identified. For
other databases, the information is much less correct,
and in general it could assumed that only developers
participating in those databases are correctly tracked.
Other persons, such as casual contributors opening some

tickets probably will not be correctly identified if they
use several identities. Fortunately, this is of relative
less relevance, since it is less likely that those casual
contributors have several addresses: they usually have just
a few contributions, during short time spans.

• Not all developers, nor even those with unique identifiers,
have affiliation information. However, this information is
available for developers contributing a very large fraction
(certainly, more than 95%) of commits. This means that
although the affiliation for a number of developers is not
defined, their contribution is small enough to be irrelevant
for many purposes.

• Although the tools used to retrieve the information have
been extensively tested, are in use in many production
environments, and the resulting data is continuously ver-
ified and validated with the help of the corresponding
projects, it could contain errors due to bugs in the tools.

• The data in the repositories is not always completely
reliable. For example, in the case of Gerrit in OpenStack,
the information is not completely correct. For example,
some code review process are shown to start well after
the date of some comments linked to them. Of course that
is not possible, and has been tracked to a bug in some
(about 5,000) code review tickets, probably due to a data
migration.

In summary, probably the main limitation of the information
in the databases is the (comparatively) little affiliation and
unique identities information for repositories other than git.

V. CONCLUSION

The collection presented in this paper provides detailed,
extensive and accurate information from several repositories
of two well known and relevant free, open source software



Fig. 2. Simplified schema of the CVSAnalY (source code) schema.

projects. Four different kinds of repositories are considered,
and the information is organized in the same way in both
projects, which eases comparative analysis. In addition, unique
identities and affiliation information is provided for a large
fraction of the developers of both projects. In addition, the in-
formation in the databases is being used to produce dashboards
for both projects (Eclipse10, OpenStack11), which allows for
visual inspection of some parameters. The information avail-
able in the databases is also comparable to that obtained
from other projects, by running MetricsGrimoire tools on their
repositories.

ACKNOWLEDGMENTS AND INVOLVEMENT

The authors thank Bitergia for letting them, with the consent
of its customers, when applicable, use this database dumps for
academic purposes. Gregorio Robles and Jesus M. Gonzalez-
Barahona were involved in the design of the retrieval tools,
and the database schemas. Daniel Izquierdo-Cortazar and Jesus

10http://dashboard.eclipse.org (March 29, 2015).
11http://activity.openstack.org (March 29, 2015).

M. Gonzalez-Barahona were involved in the retrieval of data.
Other people in Bitergia (mainly Alvaro del Castillo) were
involved in importing and checking affiliation information and
in merging identities. The authors want to thank specially
to the projects that, by making their software development
repositories public, allow for the existence of these databases.

REFERENCES

[1] G. Robles, J. M. González-Barahona, D. Izquierdo-Cortazar, and
I. Herraiz, “Tools for the study of the usual data sources found in libre
software projects,” IJOSSP, vol. 1, no. 1, pp. 24–45, 2009. [Online].
Available: http://dx.doi.org/10.4018/jossp.2009010102

[2] G. Robles, S. Koch, and J. M. Gonzalez-Barahona, “Remote analysis
and measurement of libre software systems by means of the CVSAnalY
tool,” in Proceedings of the 2nd ICSE Workshop on Remote Analysis and
Measurement of Software Systems (RAMSS), May 2004, pp. 51–56.

[3] J. M. Gonzalez-Barahona, D. Izquierdo-Cortazar, G. Robles, and
A. del Castillo, “Analyzing Gerrit code review parameters with Bicho,”
ECEASST, vol. 65, 2014. [Online]. Available: http://journal.ub.tu-berlin.
de/eceasst/article/view/908

[4] G. Robles and J. M. Gonzalez-Barahona, “Developer identification meth-
ods for integrated data from various sources,” ACM SIGSOFT Software
Engineering Notes, vol. 30, no. 4, pp. 1–5, 2005.

http://dashboard.eclipse.org
http://activity.openstack.org
http://dx.doi.org/10.4018/jossp.2009010102
http://journal.ub.tu-berlin.de/eceasst/article/view/908
http://journal.ub.tu-berlin.de/eceasst/article/view/908

